Abstract
The freshwater polyp Hydra is the most frequently used model for the study of development in cnidarians. Recently we isolated four novel Arg-Phe-NH2 (RFamide) neuropeptides, the Hydra-RFamides I-IV, from Hydra magnipapillata. Here we describe the molecular cloning of three different preprohormones from H. magnipapillata, each of which gives rise to a variety of RFamide neuropeptides. Preprohormone A contains one copy of unprocessed Hydra-RFamide I (QWLGGRFG), II (QWFNGRFG), III/IV [(KP)HLRGRFG] and two putative neuropeptide sequences (QLMSGRFG and QLMRGRFG). Preprohormone B has the same general organization as preprohormone A, but instead of unprocessed Hydra-RFamide III/IV it contains a slightly different neuropeptide sequence [(KP)HYRGRFG]. Preprohormone C contains one copy of unprocessed Hydra-RFamide I and seven additional putative neuropeptide sequences (with the common N-terminal sequence QWF/LSGRFGL). The two Hydra-RFamide II copies (in preprohormones A and B) are preceded by Thr residues, and the single Hydra-RFamide III/IV copy (in preprohormone A) is preceded by an Asn residue, confirming that cnidarians use unconventional processing signals to generate neuropeptides from their precursor proteins. Southern blot analyses suggest that preprohormones A and B are each coded for by a single gene, whereas one or possibly two closely related genes code for preprohormone C. Northern blot analyses and in situ hybridizations show that the gene coding for preprohormone A is expressed in neurons of both the head and foot regions of Hydra, whereas the genes coding for preprohormones B and C are specifically expressed in neurons of different regions of the head. All of this shows that neuropeptide biosynthesis in the primitive metazoan Hydra is already rather complex.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bode H. R. Continuous conversion of neuron phenotype in hydra. Trends Genet. 1992 Aug;8(8):279–284. doi: 10.1016/0168-9525(92)90254-2. [DOI] [PubMed] [Google Scholar]
- Bradbury A. F., Smyth D. G. Peptide amidation. Trends Biochem Sci. 1991 Mar;16(3):112–115. doi: 10.1016/0968-0004(91)90044-v. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Darmer D., Schmutzler C., Diekhoff D., Grimmelikhuijzen C. J. Primary structure of the precursor for the sea anemone neuropeptide Antho-RFamide (less than Glu-Gly-Arg-Phe-NH2). Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2555–2559. doi: 10.1073/pnas.88.6.2555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eipper B. A., Stoffers D. A., Mains R. E. The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci. 1992;15:57–85. doi: 10.1146/annurev.ne.15.030192.000421. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Gierer A., Berking S., Bode H., David C. N., Flick K., Hansmann G., Schaller H., Trenkner E. Regeneration of hydra from reaggregated cells. Nat New Biol. 1972 Sep 27;239(91):98–101. doi: 10.1038/newbio239098a0. [DOI] [PubMed] [Google Scholar]
- Gierer A. Biological features and physical concepts of pattern formation exemplified by hydra. Curr Top Dev Biol. 1977;11:17–59. doi: 10.1016/s0070-2153(08)60742-5. [DOI] [PubMed] [Google Scholar]
- Gierer A., Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972 Dec;12(1):30–39. doi: 10.1007/BF00289234. [DOI] [PubMed] [Google Scholar]
- Grens A., Gee L., Fisher D. A., Bode H. R. CnNK-2, an NK-2 homeobox gene, has a role in patterning the basal end of the axis in hydra. Dev Biol. 1996 Dec 15;180(2):473–488. doi: 10.1006/dbio.1996.0321. [DOI] [PubMed] [Google Scholar]
- Grimmelikhuijzen C. J., Leviev I., Carstensen K. Peptides in the nervous systems of cnidarians: structure, function, and biosynthesis. Int Rev Cytol. 1996;167:37–89. doi: 10.1016/s0074-7696(08)61345-5. [DOI] [PubMed] [Google Scholar]
- Koizumi O., Wilson J. D., Grimmelikhuijzen C. J., Westfall J. A. Ultrastructural localization of RFamide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra. J Exp Zool. 1989 Jan;249(1):17–22. doi: 10.1002/jez.1402490105. [DOI] [PubMed] [Google Scholar]
- Leitz T., Morand K., Mann M. Metamorphosin A: a novel peptide controlling development of the lower metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Dev Biol. 1994 Jun;163(2):440–446. doi: 10.1006/dbio.1994.1160. [DOI] [PubMed] [Google Scholar]
- Leviev I., Grimmelikhuijzen C. J. Molecular cloning of a preprohormone from sea anemones containing numerous copies of a metamorphosis-inducing neuropeptide: a likely role for dipeptidyl aminopeptidase in neuropeptide precursor processing. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11647–11651. doi: 10.1073/pnas.92.25.11647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leviev I., Williamson M., Grimmelikhuijzen C. J. Molecular cloning of a preprohormone from Hydra magnipapillata containing multiple copies of Hydra-L Wamide (Leu-Trp-NH2) neuropeptides: evidence for processing at Ser and Asn residues. J Neurochem. 1997 Mar;68(3):1319–1325. doi: 10.1046/j.1471-4159.1997.68031319.x. [DOI] [PubMed] [Google Scholar]
- Moosler A., Rinehart K. L., Grimmelikhuijzen C. J. Isolation of four novel neuropeptides, the hydra-RFamides I-IV, from Hydra magnipapillata. Biochem Biophys Res Commun. 1996 Dec 13;229(2):596–602. doi: 10.1006/bbrc.1996.1849. [DOI] [PubMed] [Google Scholar]
- Reinscheid R. K., Grimmelikhuijzen C. J. Primary structure of the precursor for the anthozoan neuropeptide antho-RFamide from Renilla köllikeri: evidence for unusual processing enzymes. J Neurochem. 1994 Mar;62(3):1214–1222. doi: 10.1046/j.1471-4159.1994.62031214.x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmutzler C., Darmer D., Diekhoff D., Grimmelikhuijzen C. J. Identification of a novel type of processing sites in the precursor for the sea anemone neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-NH2) from Anthopleura elegantissima. J Biol Chem. 1992 Nov 5;267(31):22534–22541. [PubMed] [Google Scholar]
- Schmutzler C., Diekhoff D., Grimmelikhuijzen C. J. The primary structure of the Pol-RFamide neuropeptide precursor protein from the hydromedusa Polyorchis penicillatus indicates a novel processing proteinase activity. Biochem J. 1994 Apr 15;299(Pt 2):431–436. doi: 10.1042/bj2990431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sossin W. S., Fisher J. M., Scheller R. H. Cellular and molecular biology of neuropeptide processing and packaging. Neuron. 1989 May;2(5):1407–1417. doi: 10.1016/0896-6273(89)90186-4. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Muneoka Y., Lohmann J., Lopez de Haro M. S., Solleder G., Bosch T. C., David C. N., Bode H. R., Koizumi O., Shimizu H. Systematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW families. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1241–1246. doi: 10.1073/pnas.94.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]