Abstract
Receptor-mediated endocytosis and subsequent endosomal proteolysis of [125I]TyrA14-[HisA8,HisB4,GluB10,HisB27]in sulin ([125I]TyrA14-H2 analogue), an insulin analogue exhibiting a high affinity for the insulin receptor, has been studied in liver parenchymal cells by quantitative subcellular fractionation and compared with that of wild-type [125I]TyrA14-insulin. Whereas the kinetics of uptake of the H2 analogue by liver was not different from that of insulin, the H2 analogue radioactivity after the 2 min peak declined significantly more slowly. A significant retention of the H2 analogue compared with insulin in both plasma membrane and endosomal fractions was observed and corresponded to decreased processing and dissociation of the H2 analogue. Cell-free endosomes preloaded in vivo with radiolabelled ligands and incubated in vitro processed insulin and extraluminally released insulin intermediates at a 2-3-fold higher rate than the H2 analogue. In vitro proteolysis of both non-radiolabelled and monoiodinated molecules by endosomal lysates showed a decreased response to the endosomal proteolytic machinery for the H2 analogue. However, in cross-linking and competition studies the H2 analogue exhibited an affinity for insulin-degrading enzyme identical with that of wild-type insulin. Brij-35-permeabilized endosomes revealed a 2-fold higher rate of dissociation of insulin from internalized receptors compared with the H2 analogue. After the administration of a saturating dose of both ligands, a rapid and reversible ligand-induced translocation of insulin receptor was observed, but without receptor loss. The H2 analogue induced a higher receptor concentration and tyrosine autophosphorylation of the receptor beta subunit in endosomes. Moreover, a prolonged temporal interaction of the in vivo injected H2 analogue with receptor was observed by direct binding assays performed on freshly prepared subcellular fractions. These results indicate that endosomal proteolysis for the H2 analogue is slowed as a result of an increased residence time of the analogue on the insulin receptor and a low affinity of endosomal acidic insulinase for the dissociated H2 molecule.
Full Text
The Full Text of this article is available as a PDF (558.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Authier F., Bergeron J. J., Ou W. J., Rachubinski R. A., Posner B. I., Walton P. A. Degradation of the cleaved leader peptide of thiolase by a peroxisomal proteinase. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3859–3863. doi: 10.1073/pnas.92.9.3859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Authier F., Cameron P. H., Taupin V. Association of insulin-degrading enzyme with a 70 kDa cytosolic protein in hepatoma cells. Biochem J. 1996 Oct 1;319(Pt 1):149–158. doi: 10.1042/bj3190149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Authier F., Desbuquois B., De Galle B. Ligand-mediated internalization of glucagon receptors in intact rat liver. Endocrinology. 1992 Jul;131(1):447–457. doi: 10.1210/endo.131.1.1319325. [DOI] [PubMed] [Google Scholar]
- Authier F., Desbuquois B. Degradation of glucagon in isolated liver endosomes. ATP-dependence and partial characterization of degradation products. Biochem J. 1991 Nov 15;280(Pt 1):211–218. doi: 10.1042/bj2800211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Authier F., Janicot M., Lederer F., Desbuquois B. Fate of injected glucagon taken up by rat liver in vivo. Degradation of internalized ligand in the endosomal compartment. Biochem J. 1990 Dec 15;272(3):703–712. doi: 10.1042/bj2720703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Authier F., Mort J. S., Bell A. W., Posner B. I., Bergeron J. J. Proteolysis of glucagon within hepatic endosomes by membrane-associated cathepsins B and D. J Biol Chem. 1995 Jun 30;270(26):15798–15807. doi: 10.1074/jbc.270.26.15798. [DOI] [PubMed] [Google Scholar]
- Authier F., Posner B. I., Bergeron J. J. Endosomal proteolysis of internalized proteins. FEBS Lett. 1996 Jun 24;389(1):55–60. doi: 10.1016/0014-5793(96)00368-7. [DOI] [PubMed] [Google Scholar]
- Authier F., Posner B. I., Bergeron J. J. Insulin-degrading enzyme. Clin Invest Med. 1996 Jun;19(3):149–160. [PubMed] [Google Scholar]
- Authier F., Rachubinski R. A., Posner B. I., Bergeron J. J. Endosomal proteolysis of insulin by an acidic thiol metalloprotease unrelated to insulin degrading enzyme. J Biol Chem. 1994 Jan 28;269(4):3010–3016. [PubMed] [Google Scholar]
- Backer J. M., Kahn C. R., White M. F. The dissociation and degradation of internalized insulin occur in the endosomes of rat hepatoma cells. J Biol Chem. 1990 Sep 5;265(25):14828–14835. [PubMed] [Google Scholar]
- Becker A. B., Roth R. A. Insulysin and pitrilysin: insulin-degrading enzymes of mammals and bacteria. Methods Enzymol. 1995;248:693–703. doi: 10.1016/0076-6879(95)48046-3. [DOI] [PubMed] [Google Scholar]
- Blache P., Kervran A., Le-Nguyen D., Dufour M., Cohen-Solal A., Duckworth W., Bataille D. Endopeptidase from rat liver membranes, which generates miniglucagon from glucagon. J Biol Chem. 1993 Oct 15;268(29):21748–21753. [PubMed] [Google Scholar]
- Carpentier J. L., White M. F., Orci L., Kahn R. C. Direct visualization of the phosphorylated epidermal growth factor receptor during its internalization in A-431 cells. J Cell Biol. 1987 Dec;105(6 Pt 1):2751–2762. doi: 10.1083/jcb.105.6.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuatrecasas P. Isolation of the insulin receptor of liver and fat-cell membranes (detergent-solubilized-( 125 I)insulin-polyethylene glycol precipitation-sephadex). Proc Natl Acad Sci U S A. 1972 Feb;69(2):318–322. doi: 10.1073/pnas.69.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desbuquois B., Janicot M., Dupuis A. Degradation of insulin in isolated liver endosomes is functionally linked to ATP-dependent endosomal acidification. Eur J Biochem. 1990 Oct 24;193(2):501–512. doi: 10.1111/j.1432-1033.1990.tb19365.x. [DOI] [PubMed] [Google Scholar]
- Desbuquois B., Lopez S., Burlet H. Ligand-induced translocation of insulin receptors in intact rat liver. J Biol Chem. 1982 Sep 25;257(18):10852–10860. [PubMed] [Google Scholar]
- Drejer K., Kruse V., Larsen U. D., Hougaard P., Bjørn S., Gammeltoft S. Receptor binding and tyrosine kinase activation by insulin analogues with extreme affinities studied in human hepatoma HepG2 cells. Diabetes. 1991 Nov;40(11):1488–1495. doi: 10.2337/diab.40.11.1488. [DOI] [PubMed] [Google Scholar]
- Drejer K. The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes Metab Rev. 1992 Oct;8(3):259–285. doi: 10.1002/dmr.5610080305. [DOI] [PubMed] [Google Scholar]
- Faure R., Baquiran G., Bergeron J. J., Posner B. I. The dephosphorylation of insulin and epidermal growth factor receptors. Role of endosome-associated phosphotyrosine phosphatase(s). J Biol Chem. 1992 Jun 5;267(16):11215–11221. [PubMed] [Google Scholar]
- Hansen B. F., Danielsen G. M., Drejer K., Sørensen A. R., Wiberg F. C., Klein H. H., Lundemose A. G. Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem J. 1996 Apr 1;315(Pt 1):271–279. doi: 10.1042/bj3150271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen I., Kruse V., Larsen U. D. Scintigraphic studies in rats. Kinetics of insulin analogues covering wide range of receptor affinities. Diabetes. 1991 May;40(5):628–632. doi: 10.2337/diab.40.5.628. [DOI] [PubMed] [Google Scholar]
- Jäckle S., Runquist E. A., Miranda-Brady S., Havel R. J. Trafficking of the epidermal growth factor receptor and transferrin in three hepatocytic endosomal fractions. J Biol Chem. 1991 Jan 25;266(3):1396–1402. [PubMed] [Google Scholar]
- Kuo W. L., Gehm B. D., Rosner M. R., Li W., Keller G. Inducible expression and cellular localization of insulin-degrading enzyme in a stably transfected cell line. J Biol Chem. 1994 Sep 9;269(36):22599–22606. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lai W. H., Cameron P. H., Wada I., Doherty J. J., 2nd, Kay D. G., Posner B. I., Bergeron J. J. Ligand-mediated internalization, recycling, and downregulation of the epidermal growth factor receptor in vivo. J Cell Biol. 1989 Dec;109(6 Pt 1):2741–2749. doi: 10.1083/jcb.109.6.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
- Pease R. J., Smith G. D., Peters T. J. Characterization of insulin degradation by rat-liver low-density vesicles. Eur J Biochem. 1987 Apr 1;164(1):251–257. doi: 10.1111/j.1432-1033.1987.tb11018.x. [DOI] [PubMed] [Google Scholar]
- Pease R. J., Smith G. D., Peters T. J. Degradation of endocytosed insulin in rat liver is mediated by low-density vesicles. Biochem J. 1985 May 15;228(1):137–146. doi: 10.1042/bj2280137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Planck S. R., Finch J. S., Magun B. E. Intracellular processing of epidermal growth factor. II. Intracellular cleavage of the COOH-terminal region of 125I-epidermal growth factor. J Biol Chem. 1984 Mar 10;259(5):3053–3057. [PubMed] [Google Scholar]
- Renfrew C. A., Hubbard A. L. Sequential processing of epidermal growth factor in early and late endosomes of rat liver. J Biol Chem. 1991 Mar 5;266(7):4348–4356. [PubMed] [Google Scholar]
- Seabright P. J., Smith G. D. The characterization of endosomal insulin degradation intermediates and their sequence of production. Biochem J. 1996 Dec 15;320(Pt 3):947–956. doi: 10.1042/bj3200947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shii K., Roth R. A. Inhibition of insulin degradation by hepatoma cells after microinjection of monoclonal antibodies to a specific cytosolic protease. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4147–4151. doi: 10.1073/pnas.83.12.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. D., Christensen J. R., Rideout J. M., Peters T. J. Hepatic processing of insulin. Characterization of differential inhibition by weak bases. Eur J Biochem. 1989 May 1;181(2):287–294. doi: 10.1111/j.1432-1033.1989.tb14723.x. [DOI] [PubMed] [Google Scholar]
- Surmacz C. A., Wert J. J., Jr, Ward W. F., Mortimore G. E. Uptake and intracellular fate of [14C]sucrose-insulin in perfused rat livers. Am J Physiol. 1988 Jul;255(1 Pt 1):C70–C75. doi: 10.1152/ajpcell.1988.255.1.C70. [DOI] [PubMed] [Google Scholar]
- Terris S., Steiner D. F. Binding and degradation of 125I-insulin by rat hepatocytes. J Biol Chem. 1975 Nov 10;250(21):8389–8398. [PubMed] [Google Scholar]
- Wiley H. S., VanNostrand W., McKinley D. N., Cunningham D. D. Intracellular processing of epidermal growth factor and its effect on ligand-receptor interactions. J Biol Chem. 1985 May 10;260(9):5290–5295. [PubMed] [Google Scholar]