Abstract
We have investigated whether pyrene-labelled cholesterol esters (PyrnCEs) (n indicates the number of aliphatic carbons in the pyrene-chain) can be used to observe the degradation of low-density lipoprotein (LDL)-derived cholesterol esters (CEs) in the lysosomes of living cells. To select the optimal substrates, hydrolysis of the PyrnCE species by lysosomal acid lipase (LAL) in detergent/phospholipid micelles was compared. The rate of hydrolysis varied markedly depending on the length of the pyrenyl chain. Pyr10CE was clearly the best substrate, while Pyr4CE was practically unhydrolysed. Pyr10CE and [3H]cholesteryl linoleate, the major CE species in LDL, were hydrolysed equally by LAL when incorporated together into reconstituted LDL (rLDL) particles, thus indicating that Pyr10CE is a reliable reporter of the lysosomal degradation of native CEs. When rLDL particles containing Pyr4CE or Pyr10CE were incubated with fibroblasts, the accumulation of bright intracellular vesicular fluorescence was observed with the former fluorescent derivative, but not with the latter. However, when the cells were treated with chloroquine, an inhibitor of lysosomal hydrolysis, or when cells with defective LAL were employed, Pyr10CE also accumulated in vesicular structures. HPLC analysis of cellular lipid extracts fully supported these imaging results. It is concluded that PyrnCEs can be used to observe degradation of CEs directly in living cells. This should be particularly useful when exploring the mechanisms responsible for the accumulation of lipoprotein-derived CEs in complex systems such as the arterial intima.
Full Text
The Full Text of this article is available as a PDF (336.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. G., Goldstein J. L., Brown M. S. Fluorescence visualization of receptor-bound low density lipoprotein in human fibroblasts. J Recept Res. 1980;1(1):17–39. doi: 10.3109/10799898009039253. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bartlett D., Glaser M., Welti R. Membrane penetration depth and lipid phase preference of acyl-labeled dansyl phosphatidylcholines in phosphatidylcholine vesicles. Biochim Biophys Acta. 1997 Aug 14;1328(1):48–54. doi: 10.1016/s0005-2736(97)00072-2. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J Clin Invest. 1983 Sep;72(3):743–747. doi: 10.1172/JCI111044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyay A., London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 1987 Jan 13;26(1):39–45. doi: 10.1021/bi00375a006. [DOI] [PubMed] [Google Scholar]
- Christie W. W. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res. 1985 Apr;26(4):507–512. [PubMed] [Google Scholar]
- Deckelbaum R. J., Shipley G. G., Small D. M. Structure and interactions of lipids in human plasma low density lipoproteins. J Biol Chem. 1977 Jan 25;252(2):744–754. [PubMed] [Google Scholar]
- Dix J. A., Verkman A. S. Pyrene eximer mapping in cultured fibroblasts by ratio imaging and time-resolved microscopy. Biochemistry. 1990 Feb 20;29(7):1949–1953. doi: 10.1021/bi00459a041. [DOI] [PubMed] [Google Scholar]
- Gatt S., Bremer J., Osmundsen H. Pyrene dodecanoic acid coenzyme A ester: peroxisomal oxidation and chain shortening. Biochim Biophys Acta. 1988 Jan 19;958(1):130–133. doi: 10.1016/0005-2760(88)90254-8. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
- Goldstein J. L., Brunschede G. Y., Brown M. S. Inhibition of proteolytic degradation of low density lipoprotein in human fibroblasts by chloroquine, concanavalin A, and Triton WR 1339. J Biol Chem. 1975 Oct 10;250(19):7854–7862. [PubMed] [Google Scholar]
- Goldstein J. L., Dana S. E., Faust J. R., Beaudet A. L., Brown M. S. Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease. J Biol Chem. 1975 Nov 10;250(21):8487–8495. [PubMed] [Google Scholar]
- Grundy S. M., Denke M. A. Dietary influences on serum lipids and lipoproteins. J Lipid Res. 1990 Jul;31(7):1149–1172. [PubMed] [Google Scholar]
- Guyton J. R., Klemp K. F., Black B. L., Bocan T. M. Extracellular lipid deposition in atherosclerosis. Eur Heart J. 1990 Aug;11 (Suppl E):20–28. doi: 10.1093/eurheartj/11.suppl_e.20. [DOI] [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. H., Chen J. K., Kuo J. S., Yang V. C. Visualization of the transport pathways of low density lipoproteins across the endothelial cells in the branched regions of rat arteries. Atherosclerosis. 1995 Jul;116(1):27–41. doi: 10.1016/0021-9150(95)05519-3. [DOI] [PubMed] [Google Scholar]
- Kasurinen J., Somerharju P. Metabolism and distribution of intramolecular excimer-forming dipyrenebutanoyl glycerophospholipids in human fibroblasts. Marked resistance to metabolic degradation. Biochemistry. 1995 Feb 14;34(6):2049–2057. doi: 10.1021/bi00006a027. [DOI] [PubMed] [Google Scholar]
- Kasurinen J., Somerharju P. Metabolism of pyrenyl fatty acids in baby hamster kidney fibroblasts. Effect of the acyl chain length. J Biol Chem. 1992 Apr 5;267(10):6563–6569. [PubMed] [Google Scholar]
- Krieger M., Brown M. S., Faust J. R., Goldstein J. L. Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate. Reconstitution of a biologically active lipoprotein particle. J Biol Chem. 1978 Jun 25;253(12):4093–4101. [PubMed] [Google Scholar]
- Krieger M., Smith L. C., Anderson R. G., Goldstein J. L., Kao Y. J., Pownall H. J., Gotto A. M., Jr, Brown M. S. Reconstituted low density lipoprotein: a vehicle for the delivery of hydrophobic fluorescent probes to cells. J Supramol Struct. 1979;10(4):467–478. doi: 10.1002/jss.400100409. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lupu F., Danaricu I., Simionescu N. Development of intracellular lipid deposits in the lipid-laden cells of atherosclerotic lesions. A cytochemical and ultrastructural study. Atherosclerosis. 1987 Oct;67(2-3):127–142. doi: 10.1016/0021-9150(87)90273-5. [DOI] [PubMed] [Google Scholar]
- Lusa S., Jauhiainen M., Metso J., Somerharju P., Ehnholm C. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion. Biochem J. 1996 Jan 1;313(Pt 1):275–282. doi: 10.1042/bj3130275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lusa S., Myllärniemi M., Volmonen K., Vauhkonen M., Somerharju P. Degradation of pyrene-labelled phospholipids by lysosomal phospholipases in vitro. Dependence of degradation on the length and position of the labelled and unlabelled acyl chains. Biochem J. 1996 May 1;315(Pt 3):947–952. doi: 10.1042/bj3150947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lusa S., Somerharju P. Degradation of low density lipoprotein cholesterol esters by lysosomal lipase in vitro. Effect of core physical state and basis of species selectivity. Biochim Biophys Acta. 1998 Jan 15;1389(2):112–122. doi: 10.1016/s0005-2760(97)00164-1. [DOI] [PubMed] [Google Scholar]
- Mortimer B. C., Beveridge D. J., Martins I. J., Redgrave T. G. Intracellular localization and metabolism of chylomicron remnants in the livers of low density lipoprotein receptor-deficient mice and apoE-deficient mice. Evidence for slow metabolism via an alternative apoE-dependent pathway. J Biol Chem. 1995 Dec 1;270(48):28767–28776. doi: 10.1074/jbc.270.48.28767. [DOI] [PubMed] [Google Scholar]
- Nakashima Y., Plump A. S., Raines E. W., Breslow J. L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. doi: 10.1161/01.atv.14.1.133. [DOI] [PubMed] [Google Scholar]
- Nègre A., Maret A., Douste-Blazy L., Gatt S., Salvayre R. Relative fluorescence of normal and acid lipase-deficient cultured fibroblasts following administration of pyrene decanoic acid. Biochim Biophys Acta. 1988 Jun 15;960(3):401–409. doi: 10.1016/0005-2760(88)90048-3. [DOI] [PubMed] [Google Scholar]
- Nègre A., Salvayre R., Rogalle P., Dang Q. Q., Douste-Blazy L. Acyl-chain specificity and properties of cholesterol esterases from normal and Wolman lymphoid cell lines. Biochim Biophys Acta. 1987 Mar 13;918(1):76–82. doi: 10.1016/0005-2760(87)90011-7. [DOI] [PubMed] [Google Scholar]
- Paananen K., Kovanen P. T. Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. J Biol Chem. 1994 Jan 21;269(3):2023–2031. [PubMed] [Google Scholar]
- Patrick A. D., Lake B. D. Deficiency of an acid lipase in Wolman's disease. Nature. 1969 Jun 14;222(5198):1067–1068. doi: 10.1038/2221067a0. [DOI] [PubMed] [Google Scholar]
- Pentikäinen M. O., Lehtonen E. M., Oörni K., Lusa S., Somerharju P., Jauhiainen M., Kovanen P. T. Human arterial proteoglycans increase the rate of proteolytic fusion of low density lipoprotein particles. J Biol Chem. 1997 Oct 3;272(40):25283–25288. doi: 10.1074/jbc.272.40.25283. [DOI] [PubMed] [Google Scholar]
- Pitas R. E., Innerarity T. L., Weinstein J. N., Mahley R. W. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy. Arteriosclerosis. 1981 May-Jun;1(3):177–185. doi: 10.1161/01.atv.1.3.177. [DOI] [PubMed] [Google Scholar]
- Radom J., Salvayre R., Negre A., Douste-Blazy L. Metabolism of pyrenedecanoic acid in Epstein-Barr virus-transformed lymphoid cell lines from normal subjects and from a patient with multisystemic lipid storage myopathy. Biochim Biophys Acta. 1989 Sep 25;1005(2):130–136. doi: 10.1016/0005-2760(89)90178-1. [DOI] [PubMed] [Google Scholar]
- Reddick R. L., Zhang S. H., Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb. 1994 Jan;14(1):141–147. doi: 10.1161/01.atv.14.1.141. [DOI] [PubMed] [Google Scholar]
- Ross A. C., Go K. J., Heider J. G., Rothblat G. H. Selective inhibition of acyl coenzyme A:cholesterol acyltransferase by compound 58-035. J Biol Chem. 1984 Jan 25;259(2):815–819. [PubMed] [Google Scholar]
- Sassaroli M., Ruonala M., Virtanen J., Vauhkonen M., Somerharju P. Transversal distribution of acyl-linked pyrene moieties in liquid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study. Biochemistry. 1995 Jul 11;34(27):8843–8851. doi: 10.1021/bi00027a036. [DOI] [PubMed] [Google Scholar]
- Shepherd J., Packard C. J., Grundy S. M., Yeshurun D., Gotto A. M., Jr, Taunton O. D. Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J Lipid Res. 1980 Jan;21(1):91–99. [PubMed] [Google Scholar]
- Slotte J. P., Bierman E. L. Fatty acid specificity of the lysosomal acid cholesterol esterase in intact human arterial smooth muscle cells. Biochim Biophys Acta. 1988 Feb 4;958(2):308–312. doi: 10.1016/0005-2760(88)90189-0. [DOI] [PubMed] [Google Scholar]
- Somerharju P. J., Virtanen J. A., Eklund K. K., Vainio P., Kinnunen P. K. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers. Biochemistry. 1985 May 21;24(11):2773–2781. doi: 10.1021/bi00332a027. [DOI] [PubMed] [Google Scholar]
- Somerharju P. J., van Loon D., Wirtz K. W. Determination of the acyl chain specificity of the bovine liver phosphatidylcholine transfer protein. Application of pyrene-labeled phosphatidylcholine species. Biochemistry. 1987 Nov 3;26(22):7193–7199. doi: 10.1021/bi00396a048. [DOI] [PubMed] [Google Scholar]
- Stary H. C. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J. 1990 Aug;11 (Suppl E):3–19. doi: 10.1093/eurheartj/11.suppl_e.3. [DOI] [PubMed] [Google Scholar]
- Tall A. R., Atkinson D., Small D. M., Mahley R. W. Characterization of the lipoproteins of atherosclerotic swine. J Biol Chem. 1977 Oct 25;252(20):7288–7293. [PubMed] [Google Scholar]
- Tall A. R., Small D. M., Atkinson D., Rudel L. L. Studies on the structure of low density lipoproteins isolated from Macaca fascicularis fed an atherogenic diet. J Clin Invest. 1978 Dec;62(6):1354–1363. doi: 10.1172/JCI109256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tangirala R. K., Mahlberg F. H., Glick J. M., Jerome W. G., Rothblat G. H. Lysosomal accumulation of unesterified cholesterol in model macrophage foam cells. J Biol Chem. 1993 May 5;268(13):9653–9660. [PubMed] [Google Scholar]
- Vercaemst R., Union A., Rosseneu M. Separation and quantitation of free cholesterol and cholesteryl esters in a macrophage cell line by high-performance liquid chromatography. J Chromatogr. 1989 Sep 29;494:43–52. doi: 10.1016/s0378-4347(00)82655-9. [DOI] [PubMed] [Google Scholar]
- Wolf D. E., Winiski A. P., Ting A. E., Bocian K. M., Pagano R. E. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer. Biochemistry. 1992 Mar 24;31(11):2865–2873. doi: 10.1021/bi00126a004. [DOI] [PubMed] [Google Scholar]
- van Paridon P. A., Gadella T. W., Jr, Somerharju P. J., Wirtz K. W. Properties of the binding sites for the sn-1 and sn-2 acyl chains on the phosphatidylinositol transfer protein from bovine brain. Biochemistry. 1988 Aug 23;27(17):6208–6214. doi: 10.1021/bi00417a003. [DOI] [PubMed] [Google Scholar]