Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 1;332(Pt 2):483–489. doi: 10.1042/bj3320483

Translated anti-sense product of the Na/phosphate co-transporter (NaPi-II).

B Huelseweh 1, B Kohl 1, H Hentschel 1, R K Kinne 1, A Werner 1
PMCID: PMC1219504  PMID: 9601078

Abstract

The homeostasis of Pi in marine teleosts is maintained by renal Pi secretion as well as by Pi reabsorption. A Na/Pi co-transport system belonging to the NaPi-II protein family is instrumental in tightly controlled renal Pi handling in mammals and fish. We have isolated an NaPi-II related cDNA from winter flounder. It was cloned from a female gonad cDNA library and is 624 bp long. The transcript is expressed in female and male flounder gonads as well as in kidney and intestine, although at very low levels. RNase H digestion experiments revealed an opposite orientation of the transcript with regard to NaPi-II-related mRNA. The anti-sense orientation was confirmed by genomic sequence analysis and Southern blotting. Alluding to the sense transcript, the anti-sense transcript was denoted IPAN. The open reading frame of IPAN encodes a basic protein of 68 amino acid residues. Immunohistochemistry confined the anti-sense related protein, Ipan, to a submembranous compartment of immature oocytes, suggesting a role in oocyte development. In kidney and intestine Ipan is partly co-localized with the Na/Pi co-transporter, implying a regulatory function for the anti-sense protein. However, direct protein-protein interaction could not be established. The existence of a putative open reading frame in other species extends the biological significance of the novel protein.

Full Text

The Full Text of this article is available as a PDF (681.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blalock J. E. Complementarity of peptides specified by 'sense' and 'antisense' strands of DNA. Trends Biotechnol. 1990 Jun;8(6):140–144. doi: 10.1016/0167-7799(90)90159-u. [DOI] [PubMed] [Google Scholar]
  2. Blalock J. E., Smith E. M. Hydropathic anti-complementarity of amino acids based on the genetic code. Biochem Biophys Res Commun. 1984 May 31;121(1):203–207. doi: 10.1016/0006-291x(84)90707-1. [DOI] [PubMed] [Google Scholar]
  3. Bost K. L., Smith E. M., Blalock J. E. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1372–1375. doi: 10.1073/pnas.82.5.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cao Q. P., Crain W. R. Expression of SGP-1 mRNA in preimplantation mouse embryos. Dev Genet. 1995;17(3):263–271. doi: 10.1002/dvg.1020170311. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Eguchi Y., Itoh T., Tomizawa J. Antisense RNA. Annu Rev Biochem. 1991;60:631–652. doi: 10.1146/annurev.bi.60.070191.003215. [DOI] [PubMed] [Google Scholar]
  7. Elger M., Werner A., Herter P., Kohl B., Kinne R. K., Hentschel H. Na-P(i) cotransport sites in proximal tubule and collecting tubule of winter flounder (Pleuronectes americanus). Am J Physiol. 1998 Feb;274(2 Pt 2):F374–F383. doi: 10.1152/ajprenal.1998.274.2.F374. [DOI] [PubMed] [Google Scholar]
  8. Eveloff J., Kinne R., Kinter W. B. p-Aminohippuric acid transport into brush border vesicles isolated from flounder kidney. Am J Physiol. 1979 Oct;237(4):F291–F298. doi: 10.1152/ajprenal.1979.237.4.F291. [DOI] [PubMed] [Google Scholar]
  9. Ghosh D. Status of the transcription factors database (TFD). Nucleic Acids Res. 1993 Jul 1;21(13):3117–3118. doi: 10.1093/nar/21.13.3117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harding H. P., Lazar M. A. The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol Cell Biol. 1993 May;13(5):3113–3121. doi: 10.1128/mcb.13.5.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartmann C. M., Hewson A. S., Kos C. H., Hilfiker H., Soumounou Y., Murer H., Tenenhouse H. S. Structure of murine and human renal type II Na+-phosphate cotransporter genes (Npt2 and NPT2). Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7409–7414. doi: 10.1073/pnas.93.14.7409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartmann C. M., Wagner C. A., Busch A. E., Markovich D., Biber J., Lang F., Murer H. Transport characteristics of a murine renal Na/Pi-cotransporter. Pflugers Arch. 1995 Sep;430(5):830–836. doi: 10.1007/BF00386183. [DOI] [PubMed] [Google Scholar]
  13. Hentschel H., Elger M. The distal nephron in the kidney of fishes. Adv Anat Embryol Cell Biol. 1987;108:1–151. doi: 10.1007/978-3-642-72866-2. [DOI] [PubMed] [Google Scholar]
  14. Hsieh-Li H. M., Witte D. P., Weinstein M., Branford W., Li H., Small K., Potter S. S. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development. 1995 May;121(5):1373–1385. doi: 10.1242/dev.121.5.1373. [DOI] [PubMed] [Google Scholar]
  15. Kandpal R. P., Shukla H., Ward D. C., Weissman S. M. A polymerase chain reaction approach for constructing jumping and linking libraries. Nucleic Acids Res. 1990 May 25;18(10):3081–3081. doi: 10.1093/nar/18.10.3081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kimelman D., Kirschner M. W. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell. 1989 Nov 17;59(4):687–696. doi: 10.1016/0092-8674(89)90015-9. [DOI] [PubMed] [Google Scholar]
  17. Knee R., Li A. W., Murphy P. R. Characterization and tissue-specific expression of the rat basic fibroblast growth factor antisense mRNA and protein. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4943–4947. doi: 10.1073/pnas.94.10.4943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kohl B., Herter P., Hülseweh B., Elger M., Hentschel H., Kinne R. K., Werner A. Na-Pi cotransport in flounder: same transport system in kidney and intestine. Am J Physiol. 1996 Jun;270(6 Pt 2):F937–F944. doi: 10.1152/ajprenal.1996.270.6.F937. [DOI] [PubMed] [Google Scholar]
  19. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li A. W., Too C. K., Murphy P. R. The basic fibroblast growth factor (FGF-2) antisense RNA (GFG) is translated into a MutT-related protein in vivo. Biochem Biophys Res Commun. 1996 Jun 5;223(1):19–23. doi: 10.1006/bbrc.1996.0839. [DOI] [PubMed] [Google Scholar]
  21. Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Merzendorfer H., Harvey W. R., Wieczorek H. Sense and antisense RNA for the membrane associated 40 kDa subunit M40 of the insect V-ATPase. FEBS Lett. 1997 Jul 14;411(2-3):239–244. doi: 10.1016/s0014-5793(97)00699-6. [DOI] [PubMed] [Google Scholar]
  23. Munroe S. H., Lazar M. A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem. 1991 Nov 25;266(33):22083–22086. [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sorribas V., Markovich D., Hayes G., Stange G., Forgo J., Biber J., Murer H. Cloning of a Na/Pi cotransporter from opossum kidney cells. J Biol Chem. 1994 Mar 4;269(9):6615–6621. [PubMed] [Google Scholar]
  26. Taketani Y., Miyamoto K. i., Tanaka K., Katai K., Chikamori M., Tatsumi S., Segawa H., Yamamoto H., Morita K., Takeda E. Gene structure and functional analysis of the human Na+/phosphate co-transporter. Biochem J. 1997 Jun 15;324(Pt 3):927–934. doi: 10.1042/bj3240927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Verri T., Markovich D., Perego C., Norbis F., Stange G., Sorribas V., Biber J., Murer H. Cloning of a rabbit renal Na-Pi cotransporter, which is regulated by dietary phosphate. Am J Physiol. 1995 Apr;268(4 Pt 2):F626–F633. doi: 10.1152/ajprenal.1995.268.4.F626. [DOI] [PubMed] [Google Scholar]
  28. Werner A., Murer H., Kinne R. K. Cloning and expression of a renal Na-Pi cotransport system from flounder. Am J Physiol. 1994 Aug;267(2 Pt 2):F311–F317. doi: 10.1152/ajprenal.1994.267.2.F311. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES