Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 1;332(Pt 2):499–505. doi: 10.1042/bj3320499

Quantification of cathepsins B and L in cells.

R Xing 1, A K Addington 1, R W Mason 1
PMCID: PMC1219506  PMID: 9601080

Abstract

A method for quantifying active cysteine proteinases in mammalian cells has been developed using an active-site-directed inhibitor. Fluoren-9-ylmethoxycarbonyl(di-iodotyrosylalanyl)-diaz omethane (Fmoc-[I2]Tyr-Ala-CHN2) was prepared and shown to react irreversibly with cathepsins B and L, but not with cathepsin S. The non- and mono-iodo forms of the inhibitor reacted with all three enzymes. These results demonstrate that, unlike cathepsins B and L, cathepsin S has a restricted S2-binding site that cannot accommodate the bulky di-iodotyrosine. Fmoc-[I2]Tyr-Ala-CHN2 was able to penetrate cells and react with active enzymes within the cells. A radiolabelled form of the inhibitor was synthesized and the concentration of functional inhibitor was established by titration with papain. This inhibitor was used to quantify active cysteine proteinases in cultured cells. Active cathepsin B was found to be expressed by all of the cells studied, consistently with a housekeeping role for this enzyme. Active forms of cathepsin L were also expressed by all of the cells, but in different quantities. Two additional proteins were labelled in some of the cells, and these may represent other non-characterized proteinases. Higher levels of active cathepsins B and L, and an unidentified protein of Mr 39000, were found in breast tumour cells that are invasive, compared with those that are not invasive. From the data obtained, it can be calculated that the concentrations of both active cathepsins B and L in lysosomes can be as high as 1 mM, each constituting up to 20% of total protein in the organelle. This new technique provides a more direct procedure for determining the proteolytic potential of cellular lysosomes.

Full Text

The Full Text of this article is available as a PDF (335.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  2. Brömme D., Klaus J. L., Okamoto K., Rasnick D., Palmer J. T. Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L. Biochem J. 1996 Apr 1;315(Pt 1):85–89. doi: 10.1042/bj3150085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brömme D., Steinert A., Friebe S., Fittkau S., Wiederanders B., Kirschke H. The specificity of bovine spleen cathepsin S. A comparison with rat liver cathepsins L and B. Biochem J. 1989 Dec 1;264(2):475–481. doi: 10.1042/bj2640475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chauhan S. S., Goldstein L. J., Gottesman M. M. Expression of cathepsin L in human tumors. Cancer Res. 1991 Mar 1;51(5):1478–1481. [PubMed] [Google Scholar]
  5. Crawford C., Mason R. W., Wikstrom P., Shaw E. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B. Biochem J. 1988 Aug 1;253(3):751–758. doi: 10.1042/bj2530751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cullen B. M., Halliday I. M., Kay G., Nelson J., Walker B. The application of a novel biotinylated affinity label for the detection of a cathepsin B-like precursor produced by breast-tumour cells in culture. Biochem J. 1992 Apr 15;283(Pt 2):461–465. doi: 10.1042/bj2830461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dean R. T., Barrett A. J. Lysosomes. Essays Biochem. 1976;12:1–40. [PubMed] [Google Scholar]
  8. Garfin D. E. One-dimensional gel electrophoresis. Methods Enzymol. 1990;182:425–441. doi: 10.1016/0076-6879(90)82035-z. [DOI] [PubMed] [Google Scholar]
  9. Gottesman M. M. Transformation-dependent secretion of a low molecular weight protein by murine fibroblasts. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2767–2771. doi: 10.1073/pnas.75.6.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green G. D., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J Biol Chem. 1981 Feb 25;256(4):1923–1928. [PubMed] [Google Scholar]
  11. Henning R. pH gradient across the lysosomal membrane generated by selective cation permeability and Donnan equilibrium. Biochim Biophys Acta. 1975 Aug 20;401(2):307–316. doi: 10.1016/0005-2736(75)90314-4. [DOI] [PubMed] [Google Scholar]
  12. Iveson G. P., Bird S. J., Lloyd J. B. Passive diffusion of non-electrolytes across the lysosome membrane. Biochem J. 1989 Jul 15;261(2):451–456. doi: 10.1042/bj2610451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P. Cathepsin L. A new proteinase from rat-liver lysosomes. Eur J Biochem. 1977 Apr 1;74(2):293–301. doi: 10.1111/j.1432-1033.1977.tb11393.x. [DOI] [PubMed] [Google Scholar]
  14. Linnevers C., Smeekens S. P., Brömme D. Human cathepsin W, a putative cysteine protease predominantly expressed in CD8+ T-lymphocytes. FEBS Lett. 1997 Apr 1;405(3):253–259. doi: 10.1016/s0014-5793(97)00118-x. [DOI] [PubMed] [Google Scholar]
  15. Mason R. W., Bartholomew L. T., Hardwick B. S. The use of benzyloxycarbonyl[125I]iodotyrosylalanyldiazomethane as a probe for active cysteine proteinases in human tissues. Biochem J. 1989 Nov 1;263(3):945–949. doi: 10.1042/bj2630945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mason R. W., Gal S., Gottesman M. M. The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem J. 1987 Dec 1;248(2):449–454. doi: 10.1042/bj2480449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mason R. W., Gal S., Gottesman M. M. The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem J. 1987 Dec 1;248(2):449–454. doi: 10.1042/bj2480449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mason R. W., Green G. D., Barrett A. J. Human liver cathepsin L. Biochem J. 1985 Feb 15;226(1):233–241. doi: 10.1042/bj2260233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mason R. W. Species variants of cathepsin L and their immunological identification. Biochem J. 1986 Nov 15;240(1):285–288. doi: 10.1042/bj2400285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mason R. W., Wilcox D., Wikstrom P., Shaw E. N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem J. 1989 Jan 1;257(1):125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michel H., Griffin P. R., Shabanowitz J., Hunt D. F., Bennett J. Tandem mass spectrometry identifies sites of three post-translational modifications of spinach light-harvesting chlorophyll protein II. Proteolytic cleavage, acetylation, and phosphorylation. J Biol Chem. 1991 Sep 15;266(26):17584–17591. [PubMed] [Google Scholar]
  22. Reddy V. Y., Zhang Q. Y., Weiss S. J. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3849–3853. doi: 10.1073/pnas.92.9.3849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reilly J. J., Jr, Chen P., Sailor L. Z., Mason R. W., Chapman H. A., Jr Uptake of extracellular enzyme by a novel pathway is a major determinant of cathepsin L levels in human macrophages. J Clin Invest. 1990 Jul;86(1):176–183. doi: 10.1172/JCI114682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stone S. R., Rennex D., Wikstrom P., Shaw E., Hofsteenge J. Peptidyldiazomethanes. A novel mechanism of interaction with prolyl endopeptidase. Biochem J. 1992 May 1;283(Pt 3):871–876. doi: 10.1042/bj2830871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tezuka K., Tezuka Y., Maejima A., Sato T., Nemoto K., Kamioka H., Hakeda Y., Kumegawa M. Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem. 1994 Jan 14;269(2):1106–1109. [PubMed] [Google Scholar]
  27. Thompson E. W., Paik S., Brünner N., Sommers C. L., Zugmaier G., Clarke R., Shima T. B., Torri J., Donahue S., Lippman M. E. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol. 1992 Mar;150(3):534–544. doi: 10.1002/jcp.1041500314. [DOI] [PubMed] [Google Scholar]
  28. Velasco G., Ferrando A. A., Puente X. S., Sánchez L. M., López-Otín C. Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem. 1994 Oct 28;269(43):27136–27142. [PubMed] [Google Scholar]
  29. Wilcox D., Mason R. W. Inhibition of cysteine proteinases in lysosomes and whole cells. Biochem J. 1992 Jul 15;285(Pt 2):495–502. doi: 10.1042/bj2850495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xin X. Q., Gunesekera B., Mason R. W. The specificity and elastinolytic activities of bovine cathepsins S and H. Arch Biochem Biophys. 1992 Dec;299(2):334–339. doi: 10.1016/0003-9861(92)90283-3. [DOI] [PubMed] [Google Scholar]
  31. Xing R., Wu F., Mason R. W. Control of breast tumor cell growth using a targeted cysteine protease inhibitor. Cancer Res. 1998 Mar 1;58(5):904–909. [PubMed] [Google Scholar]
  32. Zumbrunn A., Stone S., Shaw E. Synthesis and properties of Cbz-Phe-Arg-CHN2 (benzyloxycarbonylphenylalanylarginyldiazomethane) as a proteinase inhibitor. Biochem J. 1988 Mar 1;250(2):621–623. doi: 10.1042/bj2500621. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES