Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 1;332(Pt 2):517–524. doi: 10.1042/bj3320517

Resistance to the apoptotic effect of aggregated amyloid-beta peptide in several different cell types including neuronal- and hepatoma-derived cell lines.

M Mazziotti 1, D H Perlmutter 1
PMCID: PMC1219508  PMID: 9601082

Abstract

There is a large body of literature indicating that aggregated amyloid-beta peptide (Abeta) is toxic to neurons and suggesting that this neurotoxicity represents the final common pathway for neuronal degeneration in Alzheimer's disease. Previous studies have shown the outgrowth of a subclone of the rat neuronal cell line PC12 that is resistant to the toxic effect of aggregated Abeta peptide if the parent cell line is grown in the presence of aggregated Abeta peptide for a number of passages [Behl, Davis, Lesley and Schubert (1994) Cell 77, 817-827; Boland, Behrens, Choi, Manias and Perlmutter (1996) J. Biol. Chem. 271, 18032-18044]. To begin to characterize the mechanism by which PC12 cells become resistant to the apoptotic effect of Abeta peptide, in the present study we examined whether the resistance was specific to aggregated peptides, specific to an apoptotic form of cell death, and specific in cell type or was a general resistance to cell death that could be elicited in diverse cell types. The results show that the resistance is specific to compounds that have apoptotic effects through the generation of hydroxyl radical or H2O2, including aggregated Abeta-(25-35), Abeta-(1-40), Abeta-(1-42), Abeta-(1-43), amylin, 6-hydroxydopamine and H2O2 itself. The resistant subclones of PC12 were not resistant to other forms of apoptotic cell death or to necrotic cell death. The resistant state was also identified in a human hepatoma cell line, HepG2, when it was grown in the presence of aggregated Abeta-(25-35) for several passages, indicating that the mechanism(s) or molecule(s) responsible for this resistance are not restricted to neuronal cells and may be relevant to the pathobiology of oxidative injury in other cell types.

Full Text

The Full Text of this article is available as a PDF (613.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batistatou A., Greene L. A. Aurintricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity. J Cell Biol. 1991 Oct;115(2):461–471. doi: 10.1083/jcb.115.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behl C., Davis J. B., Klier F. G., Schubert D. Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res. 1994 May 9;645(1-2):253–264. doi: 10.1016/0006-8993(94)91659-4. [DOI] [PubMed] [Google Scholar]
  3. Behl C., Davis J. B., Lesley R., Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994 Jun 17;77(6):817–827. doi: 10.1016/0092-8674(94)90131-7. [DOI] [PubMed] [Google Scholar]
  4. Boland K., Behrens M., Choi D., Manias K., Perlmutter D. H. The serpin-enzyme complex receptor recognizes soluble, nontoxic amyloid-beta peptide but not aggregated, cytotoxic amyloid-beta peptide. J Biol Chem. 1996 Jul 26;271(30):18032–18044. doi: 10.1074/jbc.271.30.18032. [DOI] [PubMed] [Google Scholar]
  5. Café C., Torri C., Bertorelli L., Angeretti N., Lucca E., Forloni G., Marzatico F. Oxidative stress after acute and chronic application of beta-amyloid fragment 25-35 in cortical cultures. Neurosci Lett. 1996 Jan 12;203(1):61–65. doi: 10.1016/0304-3940(95)12250-8. [DOI] [PubMed] [Google Scholar]
  6. Cummings B. J., Cotman C. W. Image analysis of beta-amyloid load in Alzheimer's disease and relation to dementia severity. Lancet. 1995 Dec 9;346(8989):1524–1528. doi: 10.1016/s0140-6736(95)92053-6. [DOI] [PubMed] [Google Scholar]
  7. Farias-Eisner R., Chaudhuri G., Aeberhard E., Fukuto J. M. The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J Biol Chem. 1996 Mar 15;271(11):6144–6151. doi: 10.1074/jbc.271.11.6144. [DOI] [PubMed] [Google Scholar]
  8. Forloni G., Chiesa R., Smiroldo S., Verga L., Salmona M., Tagliavini F., Angeretti N. Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35. Neuroreport. 1993 May;4(5):523–526. doi: 10.1097/00001756-199305000-00015. [DOI] [PubMed] [Google Scholar]
  9. Furukawa K., Estus S., Fu W., Mark R. J., Mattson M. P. Neuroprotective action of cycloheximide involves induction of bcl-2 and antioxidant pathways. J Cell Biol. 1997 Mar 10;136(5):1137–1149. doi: 10.1083/jcb.136.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haass C., Capell A., Citron M., Teplow D. B., Selkoe D. J. The vacuolar H(+)-ATPase inhibitor bafilomycin A1 differentially affects proteolytic processing of mutant and wild-type beta-amyloid precursor protein. J Biol Chem. 1995 Mar 17;270(11):6186–6192. doi: 10.1074/jbc.270.11.6186. [DOI] [PubMed] [Google Scholar]
  11. Haass C., Hung A. Y., Schlossmacher M. G., Teplow D. B., Selkoe D. J. beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem. 1993 Feb 15;268(5):3021–3024. [PubMed] [Google Scholar]
  12. Haass C., Hung A. Y., Selkoe D. J., Teplow D. B. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem. 1994 Jul 1;269(26):17741–17748. [PubMed] [Google Scholar]
  13. Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature. 1992 Sep 24;359(6393):322–325. doi: 10.1038/359322a0. [DOI] [PubMed] [Google Scholar]
  14. Hansen M. B., Nielsen S. E., Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989 May 12;119(2):203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
  15. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  16. Hockenbery D., Nuñez G., Milliman C., Schreiber R. D., Korsmeyer S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990 Nov 22;348(6299):334–336. doi: 10.1038/348334a0. [DOI] [PubMed] [Google Scholar]
  17. Ioannidis I., de Groot H. Cytotoxicity of nitric oxide in Fu5 rat hepatoma cells: evidence for co-operative action with hydrogen peroxide. Biochem J. 1993 Dec 1;296(Pt 2):341–345. doi: 10.1042/bj2960341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jackson G. R., Sampath D., Werrbach-Perez K., Perez-Polo J. R. Effects of nerve growth factor on catalase and glutathione peroxidase in a hydrogen peroxide-resistant pheochromocytoma subclone. Brain Res. 1994 Jan 14;634(1):69–76. doi: 10.1016/0006-8993(94)90259-3. [DOI] [PubMed] [Google Scholar]
  19. Joslin G., Krause J. E., Hershey A. D., Adams S. P., Fallon R. J., Perlmutter D. H. Amyloid-beta peptide, substance P, and bombesin bind to the serpin-enzyme complex receptor. J Biol Chem. 1991 Nov 15;266(32):21897–21902. [PubMed] [Google Scholar]
  20. Kuo Y. M., Emmerling M. R., Vigo-Pelfrey C., Kasunic T. C., Kirkpatrick J. B., Murdoch G. H., Ball M. J., Roher A. E. Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem. 1996 Feb 23;271(8):4077–4081. doi: 10.1074/jbc.271.8.4077. [DOI] [PubMed] [Google Scholar]
  21. Loo D. T., Copani A., Pike C. J., Whittemore E. R., Walencewicz A. J., Cotman C. W. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7951–7955. doi: 10.1073/pnas.90.17.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lorenzo A., Razzaboni B., Weir G. C., Yankner B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature. 1994 Apr 21;368(6473):756–760. doi: 10.1038/368756a0. [DOI] [PubMed] [Google Scholar]
  23. Lorenzo A., Yankner B. A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12243–12247. doi: 10.1073/pnas.91.25.12243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mattson M. P., Tomaselli K. J., Rydel R. E. Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res. 1993 Sep 3;621(1):35–49. doi: 10.1016/0006-8993(93)90295-x. [DOI] [PubMed] [Google Scholar]
  25. McConkey D. J., Hartzell P., Nicotera P., Orrenius S. Calcium-activated DNA fragmentation kills immature thymocytes. FASEB J. 1989 May;3(7):1843–1849. doi: 10.1096/fasebj.3.7.2497041. [DOI] [PubMed] [Google Scholar]
  26. McConkey D. J., Orrenius S. Signal transduction pathways to apoptosis. Trends Cell Biol. 1994 Oct;4(10):370–375. doi: 10.1016/0962-8924(94)90087-6. [DOI] [PubMed] [Google Scholar]
  27. Nakajima M., Kashiwagi K., Ohta J., Furukawa S., Hayashi K., Kawashima T., Hayashi Y. Nerve growth factor and epidermal growth factor rescue PC12 cells from programmed cell death induced by etoposide: distinct modes of protection against cell death by growth factors and a protein-synthesis inhibitor. Neurosci Lett. 1994 Aug 1;176(2):161–164. doi: 10.1016/0304-3940(94)90072-8. [DOI] [PubMed] [Google Scholar]
  28. Ojcius D. M., Zychlinsky A., Zheng L. M., Young J. D. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res. 1991 Nov;197(1):43–49. doi: 10.1016/0014-4827(91)90477-c. [DOI] [PubMed] [Google Scholar]
  29. Perlmutter D. H., Joslin G., Nelson P., Schasteen C., Adams S. P., Fallon R. J. Endocytosis and degradation of alpha 1-antitrypsin-protease complexes is mediated by the serpin-enzyme complex (SEC) receptor. J Biol Chem. 1990 Oct 5;265(28):16713–16716. [PubMed] [Google Scholar]
  30. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., Cotman C. W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci. 1993 Apr;13(4):1676–1687. doi: 10.1523/JNEUROSCI.13-04-01676.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pike C. J., Overman M. J., Cotman C. W. Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. J Biol Chem. 1995 Oct 13;270(41):23895–23898. doi: 10.1074/jbc.270.41.23895. [DOI] [PubMed] [Google Scholar]
  32. Pike C. J., Walencewicz-Wasserman A. J., Kosmoski J., Cribbs D. H., Glabe C. G., Cotman C. W. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem. 1995 Jan;64(1):253–265. doi: 10.1046/j.1471-4159.1995.64010253.x. [DOI] [PubMed] [Google Scholar]
  33. Pike C. J., Walencewicz A. J., Glabe C. G., Cotman C. W. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 1991 Nov 1;563(1-2):311–314. doi: 10.1016/0006-8993(91)91553-d. [DOI] [PubMed] [Google Scholar]
  34. Sagara Y., Dargusch R., Klier F. G., Schubert D., Behl C. Increased antioxidant enzyme activity in amyloid beta protein-resistant cells. J Neurosci. 1996 Jan 15;16(2):497–505. doi: 10.1523/JNEUROSCI.16-02-00497.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saido T. C., Iwatsubo T., Mann D. M., Shimada H., Ihara Y., Kawashima S. Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron. 1995 Feb;14(2):457–466. doi: 10.1016/0896-6273(95)90301-1. [DOI] [PubMed] [Google Scholar]
  36. Schubert D., Behl C., Lesley R., Brack A., Dargusch R., Sagara Y., Kimura H. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1989–1993. doi: 10.1073/pnas.92.6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schubert D., Kimura H., Maher P. Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8264–8267. doi: 10.1073/pnas.89.17.8264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Selkoe D. J. Amyloid beta-protein and the genetics of Alzheimer's disease. J Biol Chem. 1996 Aug 2;271(31):18295–18298. doi: 10.1074/jbc.271.31.18295. [DOI] [PubMed] [Google Scholar]
  39. Shearman M. S., Ragan C. I., Iversen L. L. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1470–1474. doi: 10.1073/pnas.91.4.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shimizu S., Eguchi Y., Kamiike W., Waguri S., Uchiyama Y., Matsuda H., Tsujimoto Y. Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene. 1996 May 16;12(10):2045–2050. [PubMed] [Google Scholar]
  41. Suzuki N., Cheung T. T., Cai X. D., Odaka A., Otvos L., Jr, Eckman C., Golde T. E., Younkin S. G. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994 May 27;264(5163):1336–1340. doi: 10.1126/science.8191290. [DOI] [PubMed] [Google Scholar]
  42. Walkinshaw G., Waters C. M. Neurotoxin-induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience. 1994 Dec;63(4):975–987. doi: 10.1016/0306-4522(94)90566-5. [DOI] [PubMed] [Google Scholar]
  43. Yaar M., Zhai S., Pilch P. F., Doyle S. M., Eisenhauer P. B., Fine R. E., Gilchrest B. A. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J Clin Invest. 1997 Nov 1;100(9):2333–2340. doi: 10.1172/JCI119772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yan S. D., Fu J., Soto C., Chen X., Zhu H., Al-Mohanna F., Collison K., Zhu A., Stern E., Saido T. An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease. Nature. 1997 Oct 16;389(6652):689–695. doi: 10.1038/39522. [DOI] [PubMed] [Google Scholar]
  45. Yankner B. A., Duffy L. K., Kirschner D. A. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 1990 Oct 12;250(4978):279–282. doi: 10.1126/science.2218531. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES