Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 1;332(Pt 2):525–531. doi: 10.1042/bj3320525

Characterization of sphingosine kinase (SK) activity in Saccharomyces cerevisiae and isolation of SK-deficient mutants.

M M Lanterman 1, J D Saba 1
PMCID: PMC1219509  PMID: 9601083

Abstract

Sphingosine kinase (SK) catalyses the phosphorylation of sphingosine to generate sphingosine 1-phosphate, which is a second messenger involved in the proliferative responses of mammalian cells. Although the yeast Saccharomyces cerevisiae has similar phosphorylated sphingoid bases which appear to be involved in growth regulation and the response to stress, SK activity had not been previously demonstrated in yeast. In this study, an in vitro system was set up to characterize yeast SK activity. Activity was detected in the cytosol at neutral pH and 37 degreesC. Yeast SK phosphorylated the sphingoid bases sphingosine, dihydrosphingosine and phytosphingosine. (d,l)-threo-dihydrosphingosine, an inhibitor of mammalian SK, did not inhibit the yeast enzyme. Unique properties of yeast SK were an optimal temperature of 43 degreesC, and in vivo activation during nutrient deprivation. Spontaneous mutants with diminished SK activity were isolated utilizing a screen for resistance to sphingosine in a sphingosine-phosphate-lyase deletion background. Abnormal growth and heat sensitivity were observed in these mutants. These findings suggest that SK may function as a stress-response protein in yeast.

Full Text

The Full Text of this article is available as a PDF (505.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buehrer B. M., Bell R. M. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem. 1992 Feb 15;267(5):3154–3159. [PubMed] [Google Scholar]
  2. Buehrer B. M., Bell R. M. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem. 1992 Feb 15;267(5):3154–3159. [PubMed] [Google Scholar]
  3. Buehrer B. M., Bell R. M. Sphingosine kinase: properties and cellular functions. Adv Lipid Res. 1993;26:59–67. [PubMed] [Google Scholar]
  4. Dickson R. C., Nagiec E. E., Skrzypek M., Tillman P., Wells G. B., Lester R. L. Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem. 1997 Nov 28;272(48):30196–30200. doi: 10.1074/jbc.272.48.30196. [DOI] [PubMed] [Google Scholar]
  5. Fishbein J. D., Dobrowsky R. T., Bielawska A., Garrett S., Hannun Y. A. Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem. 1993 May 5;268(13):9255–9261. [PubMed] [Google Scholar]
  6. Garfinkel D. J., Mastrangelo M. F., Sanders N. J., Shafer B. K., Strathern J. N. Transposon tagging using Ty elements in yeast. Genetics. 1988 Sep;120(1):95–108. doi: 10.1093/genetics/120.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
  8. Keenan R. W., Maxam A. The in vitro degradation of dihydrosphingosine. Biochim Biophys Acta. 1969 Mar 4;176(2):348–356. doi: 10.1016/0005-2760(69)90193-3. [DOI] [PubMed] [Google Scholar]
  9. Lester R. L., Dickson R. C. Sphingolipids with inositolphosphate-containing head groups. Adv Lipid Res. 1993;26:253–274. [PubMed] [Google Scholar]
  10. Louie D. D., Kisic A., Schroefer G. J., Jr Sphingolipid base metabolism. Partial purification and properties of sphinganine kinase of brain. J Biol Chem. 1976 Aug 10;251(15):4557–4564. [PubMed] [Google Scholar]
  11. Mandala S. M., Thornton R., Tu Z., Kurtz M. B., Nickels J., Broach J., Menzeleev R., Spiegel S. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):150–155. doi: 10.1073/pnas.95.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Merrill A. H., Jr, Wang E., Mullins R. E., Jamison W. C., Nimkar S., Liotta D. C. Quantitation of free sphingosine in liver by high-performance liquid chromatography. Anal Biochem. 1988 Jun;171(2):373–381. doi: 10.1016/0003-2697(88)90500-3. [DOI] [PubMed] [Google Scholar]
  13. Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
  14. Saba J. D., Nara F., Bielawska A., Garrett S., Hannun Y. A. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem. 1997 Oct 17;272(42):26087–26090. doi: 10.1074/jbc.272.42.26087. [DOI] [PubMed] [Google Scholar]
  15. Sadahira Y., Ruan F., Hakomori S., Igarashi Y. Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9686–9690. doi: 10.1073/pnas.89.20.9686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spiegel S., Foster D., Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol. 1996 Apr;8(2):159–167. doi: 10.1016/s0955-0674(96)80061-5. [DOI] [PubMed] [Google Scholar]
  17. Stoffel W., Bister K. Stereospecificities in the metabolic reactions of the four isomeric sphinganines (dihydrosphingosines) in rat liver. Hoppe Seylers Z Physiol Chem. 1973 Feb;354(2):169–181. doi: 10.1515/bchm2.1973.354.1.169. [DOI] [PubMed] [Google Scholar]
  18. Werner-Washburne M., Braun E., Johnston G. C., Singer R. A. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1993 Jun;57(2):383–401. doi: 10.1128/mr.57.2.383-401.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yamamura S., Yatomi Y., Ruan F., Sweeney E. A., Hakomori S., Igarashi Y. Sphingosine 1-phosphate regulates melanoma cell motility through a receptor-coupled extracellular action and in a pertussis toxin-insensitive manner. Biochemistry. 1997 Sep 2;36(35):10751–10759. doi: 10.1021/bi970926s. [DOI] [PubMed] [Google Scholar]
  20. Yatomi Y., Ruan F., Ohta J., Welch R. J., Hakomori S., Igarashi Y. Quantitative measurement of sphingosine 1-phosphate in biological samples by acylation with radioactive acetic anhydride. Anal Biochem. 1995 Sep 20;230(2):315–320. doi: 10.1006/abio.1995.1480. [DOI] [PubMed] [Google Scholar]
  21. Yatomi Y., Yamamura S., Ruan F., Igarashi Y. Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J Biol Chem. 1997 Feb 21;272(8):5291–5297. doi: 10.1074/jbc.272.8.5291. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES