Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 1;332(Pt 2):541–548. doi: 10.1042/bj3320541

Fatty acids induce release of Ca2+ from acidosomal stores and activate capacitative Ca2+ entry in Dictyostelium discoideum.

R Schaloske 1, J Sonnemann 1, D Malchow 1, C Schlatterer 1
PMCID: PMC1219511  PMID: 9601085

Abstract

cAMP-induced Ca2+ fluxes in Dictyostelium discoideum largely depend on phospholipase A2 activity generating non-esterified fatty acids [Schaloske and Malchow (1997) Biochem. J. 327, 233-238]. In the present study the effect of fatty acids on Ca2+ homoeostasis in D. discoideum was investigated. Cytosolic free Ca2+ concentration ([Ca2+]i) was analysed by digital imaging of single fura2-dextran-loaded cells. Arachidonic acid and linoleic acid induced a transient increase in [Ca2+]i. The concentration of arachidonic acid determined the percentage of responding cells, with the mean height of the increase being dose-independent. In nominally Ca2+-free medium or in the presence of bis-(o-aminophenoxy)ethane-N, N,N',N'-tetra-acetic acid (BAPTA), no [Ca2+]i transient was detectable. In spite of this, we found that (1) arachidonic acid induced Ca2+ release from permeabilized cells and from vesicular fractions at concentrations that elicited Ca2+ influx in intact cells and (2) Ca2+ entry was inhibited by inhibitors of Ca2+-transport ATPases and V-type H+-ATPase, indicating that intracellular Ca2+ release precedes Ca2+ entry. Inhibition studies and mutant analysis point to the acidosomal Ca2+ stores as a target of fatty acids. Although fatty acids can substitute fully for cAMP with respect to Ca2+ influx in wild-type cells, experiments with a mutant strain revealed that cAMP also sensitizes the Ca2+-entry mechanism: cAMP-induced Ca2+ influx was normal in a phospholipase C knockout mutant but influx was fairly insensitive to arachidonic acid in this strain. This defect could be overcome by higher doses of arachidonic acid which cause sufficient Ca2+ to be released from the stores to trigger extracellular Ca2+ entry.

Full Text

The Full Text of this article is available as a PDF (467.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bominaar A. A., Kesbeke F., Van Haastert P. J. Phospholipase C in Dictyostelium discoideum. Cyclic AMP surface receptor and G-protein-regulated activity in vitro. Biochem J. 1994 Jan 1;297(Pt 1):181–187. doi: 10.1042/bj2970181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bumann J., Wurster B., Malchow D. Attractant-induced changes and oscillations of the extracellular Ca++ concentration in suspensions of differentiating Dictyostelium cells. J Cell Biol. 1984 Jan;98(1):173–178. doi: 10.1083/jcb.98.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  4. Cristóvão A. J., Capela A. N., Carvalho C. M. Ca2+ stores in the chick embryo retina cells. Cell Signal. 1997 Jan;9(1):97–103. doi: 10.1016/s0898-6568(96)00116-7. [DOI] [PubMed] [Google Scholar]
  5. Cubitt A. B., Firtel R. A. Characterization of phospholipase activity in Dictyostelium discoideum. Identification of a Ca(2+)-dependent polyphosphoinositide-specific phospholipase C. Biochem J. 1992 Apr 15;283(Pt 2):371–378. doi: 10.1042/bj2830371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIDOFF F., KORN E. D. FATTY ACID AND PHOSPHOLIPID COMPOSITION OF THE CELLULAR SLIME MOLD, DICTYOSTELIUM DISCOIDEUM. THE OCCURRENCE OF PREVIOUSLY UNDESCRIBED FATTY ACIDS. J Biol Chem. 1963 Oct;238:3199–3209. [PubMed] [Google Scholar]
  7. Drayer A. L., Van der Kaay J., Mayr G. W., Van Haastert P. J. Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J. 1994 Apr 1;13(7):1601–1609. doi: 10.1002/j.1460-2075.1994.tb06423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flaadt H., Jaworski E., Malchow D. Evidence for two intracellular calcium pools in Dictyostelium: the cAMP-induced calcium influx is directed into a NBD-Cl- and 2,5-di-(tert-butyl)1,4-hydroquinone-sensitive pool. J Cell Sci. 1993 Aug;105(Pt 4):1131–1135. doi: 10.1242/jcs.105.4.1131. [DOI] [PubMed] [Google Scholar]
  9. Giglione C., Gross J. D. Anion effects on vesicle acidification in Dictyostelium. Biochem Mol Biol Int. 1995 Aug;36(5):1057–1065. [PubMed] [Google Scholar]
  10. Huang W. C., Chueh S. H. Calcium mobilization from the intracellular mitochondrial and nonmitochondrial stores of the rat cerebellum. Brain Res. 1996 Apr 29;718(1-2):151–158. doi: 10.1016/0006-8993(96)00108-4. [DOI] [PubMed] [Google Scholar]
  11. Hwang S. C., Jhon D. Y., Bae Y. S., Kim J. H., Rhee S. G. Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid. J Biol Chem. 1996 Aug 2;271(31):18342–18349. doi: 10.1074/jbc.271.31.18342. [DOI] [PubMed] [Google Scholar]
  12. Janssens P. M., De Jong C. C., Vink A. A., Van Haastert P. J. Regulatory properties of magnesium-dependent guanylate cyclase in Dictyostelium discoideum membranes. J Biol Chem. 1989 Mar 15;264(8):4329–4335. [PubMed] [Google Scholar]
  13. Lundberg G. A., Newell P. C. Membrane-associated phosphoinositidase C activity in Dictyostelium discoideum. FEBS Lett. 1990 Sep 17;270(1-2):181–183. doi: 10.1016/0014-5793(90)81262-m. [DOI] [PubMed] [Google Scholar]
  14. Malchow D., Lüderitz O., Westphal O., Gerisch G., Riedel V. Polysaccharide in vegetativen und aggregationsreifen Amöben von Dictyostelium discoideum. 1. In vivo Degradierung von Bakterien-Lipopolysaccharid. Eur J Biochem. 1967 Nov;2(4):469–479. doi: 10.1111/j.1432-1033.1967.tb00161.x. [DOI] [PubMed] [Google Scholar]
  15. Malchow D., Schaloske R., Schlatterer C. An increase in cytosolic Ca2+ delays cAMP oscillations in Dictyostelium cells. Biochem J. 1996 Oct 1;319(Pt 1):323–327. doi: 10.1042/bj3190323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsuoka K., Higuchi T., Maeshima M., Nakamura K. A Vacuolar-Type H+-ATPase in a Nonvacuolar Organelle Is Required for the Sorting of Soluble Vacuolar Protein Precursors in Tobacco Cells. Plant Cell. 1997 Apr;9(4):533–546. doi: 10.1105/tpc.9.4.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Menz S., Bumann J., Jaworski E., Malchow D. Mutant analysis suggests that cyclic GMP mediates the cyclic AMP-induced Ca2+ uptake in Dictyostelium. J Cell Sci. 1991 May;99(Pt 1):187–191. doi: 10.1242/jcs.99.1.187. [DOI] [PubMed] [Google Scholar]
  18. Newell P. C., Malchow D., Gross J. D. The role of calcium in aggregation and development of Dictyostelium. Experientia. 1995 Dec 18;51(12):1155–1165. doi: 10.1007/BF01944733. [DOI] [PubMed] [Google Scholar]
  19. Packham D. E., Jiang L., Conigrave A. D. Arachidonate and other fatty acids mobilize Ca2+ ions and stimulate beta-glucuronidase release in a Ca(2+)-dependent fashion from undifferentiated HL-60 cells. Cell Calcium. 1995 Jun;17(6):399–408. doi: 10.1016/0143-4160(95)90086-1. [DOI] [PubMed] [Google Scholar]
  20. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  21. Rooney E. K., Gross J. D. ATP-driven Ca2+/H+ antiport in acid vesicles from Dictyostelium. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8025–8029. doi: 10.1073/pnas.89.17.8025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rooney E. K., Gross J. D., Satre M. Characterisation of an intracellular Ca2+ pump in Dictyostelium. Cell Calcium. 1994 Dec;16(6):509–522. doi: 10.1016/0143-4160(94)90081-7. [DOI] [PubMed] [Google Scholar]
  23. Ross F. M., Newell P. C. Streamers: chemotactic mutants of Dictyostelium discoideum with altered cyclic GMP metabolism. J Gen Microbiol. 1981 Dec;127(2):339–350. doi: 10.1099/00221287-127-2-339. [DOI] [PubMed] [Google Scholar]
  24. Roudbaraki M. M., Vacher P., Drouhault R. Arachidonic acid increases cytosolic calcium and stimulates hormone release in rat lactotrophs. Am J Physiol. 1995 Jun;268(6 Pt 1):E1215–E1223. doi: 10.1152/ajpendo.1995.268.6.E1215. [DOI] [PubMed] [Google Scholar]
  25. Rzigalinski B. A., Blackmore P. F., Rosenthal M. D. Arachidonate mobilization is coupled to depletion of intracellular calcium stores and influx of extracellular calcium in differentiated U937 cells. Biochim Biophys Acta. 1996 Feb 16;1299(3):342–352. doi: 10.1016/0005-2760(95)00224-3. [DOI] [PubMed] [Google Scholar]
  26. Schaloske R., Malchow D. Mechanism of cAMP-induced Ca2+ influx in Dictyostelium: role of phospholipase A2. Biochem J. 1997 Oct 1;327(Pt 1):233–238. doi: 10.1042/bj3270233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schlatterer C., Schaloske R. Calmidazolium leads to an increase in the cytosolic Ca2+ concentration in Dictyostelium discoideum by induction of Ca2+ release from intracellular stores and influx of extracellular Ca2+. Biochem J. 1996 Jan 15;313(Pt 2):661–667. doi: 10.1042/bj3130661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shuttleworth T. J. Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem. 1996 Sep 6;271(36):21720–21725. doi: 10.1074/jbc.271.36.21720. [DOI] [PubMed] [Google Scholar]
  29. Shuttleworth T. J. Intracellular Ca2+ signalling in secretory cells. J Exp Biol. 1997 Jan;200(Pt 2):303–314. doi: 10.1242/jeb.200.2.303. [DOI] [PubMed] [Google Scholar]
  30. Small N. V., Europe-Firmer G. N., Newell P. C. Calcium induces cyclic GMP formation in Dictyostelium. FEBS Lett. 1986 Jul 14;203(1):11–14. doi: 10.1016/0014-5793(86)81426-0. [DOI] [PubMed] [Google Scholar]
  31. Sonnemann J., Knoll G., Schlatterer C. cAMP-induced changes in the cytosolic free Ca2+ concentration in Dictyostelium discoideum are light sensitive. Cell Calcium. 1997 Jul;22(1):65–74. doi: 10.1016/s0143-4160(97)90090-7. [DOI] [PubMed] [Google Scholar]
  32. Temesvari L. A., Rodriguez-Paris J. M., Bush J. M., Zhang L., Cardelli J. A. Involvement of the vacuolar proton-translocating ATPase in multiple steps of the endo-lysosomal system and in the contractile vacuole system of Dictyostelium discoideum. J Cell Sci. 1996 Jun;109(Pt 6):1479–1495. doi: 10.1242/jcs.109.6.1479. [DOI] [PubMed] [Google Scholar]
  33. Van Dijken P., Bergsma J. C., Van Haastert P. J. Phospholipase-C-independent inositol 1,4,5-trisphosphate formation in Dictyostelium cells. Activation of a plasma-membrane-bound phosphatase by receptor-stimulated Ca2+ influx. Eur J Biochem. 1997 Feb 15;244(1):113–119. doi: 10.1111/j.1432-1033.1997.00113.x. [DOI] [PubMed] [Google Scholar]
  34. Van Haastert P. J., De Vries M. J., Penning L. C., Roovers E., Van der Kaay J., Erneux C., Van Lookeren Campagne M. M. Chemoattractant and guanosine 5'-[gamma-thio]triphosphate induce the accumulation of inositol 1,4,5-trisphosphate in Dictyostelium cells that are labelled with [3H]inositol by electroporation. Biochem J. 1989 Mar 1;258(2):577–586. doi: 10.1042/bj2580577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van Haastert P. J. Determination of inositol 1,4,5-trisphosphate levels in Dictyostelium by isotope dilution assay. Anal Biochem. 1989 Feb 15;177(1):115–119. doi: 10.1016/0003-2697(89)90024-9. [DOI] [PubMed] [Google Scholar]
  36. Volpi M., Yassin R., Tao W., Molski T. F., Naccache P. H., Sha'afi R. I. Leukotriene B4 mobilizes calcium without the breakdown of polyphosphoinositides and the production of phosphatidic acid in rabbit neutrophils. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5966–5969. doi: 10.1073/pnas.81.19.5966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weeks G., Herring F. G. The lipid composition and membrane fluidity of Dictyostelium discoideum plasma membranes at various stages during differentiation. J Lipid Res. 1980 Aug;21(6):681–686. [PubMed] [Google Scholar]
  39. Weeks G. The manipulation of the fatty acid composition of Dictyostelium discoideum and its effect on cell differentiation. Biochim Biophys Acta. 1976 Oct 21;450(1):21–32. doi: 10.1016/0005-2760(76)90295-2. [DOI] [PubMed] [Google Scholar]
  40. Wolf B. A., Turk J., Sherman W. R., McDaniel M. L. Intracellular Ca2+ mobilization by arachidonic acid. Comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets. J Biol Chem. 1986 Mar 15;261(8):3501–3511. [PubMed] [Google Scholar]
  41. Wu L., Katz S., Brown G. R. Inositol 1,4,5-trisphosphate-, GTP-, arachidonic acid- and thapsigargin-mediated intracellular calcium movement in PANC-1 microsomes. Cell Calcium. 1994 Mar;15(3):228–240. doi: 10.1016/0143-4160(94)90062-0. [DOI] [PubMed] [Google Scholar]
  42. Wurster B., Schubiger K., Wick U., Gerisch G. Cyclic GMP in Dictyostelium discoideum, Oscillations and pulses in response to folic acid and cyclic AMP signals. FEBS Lett. 1977 Apr 15;76(2):141–144. doi: 10.1016/0014-5793(77)80139-7. [DOI] [PubMed] [Google Scholar]
  43. Xu X., Zeng W., Muallem S. Regulation of the inositol 1,4,5-trisphosphate-activated Ca2+ channel by activation of G proteins. J Biol Chem. 1996 May 17;271(20):11737–11744. doi: 10.1074/jbc.271.20.11737. [DOI] [PubMed] [Google Scholar]
  44. Yumura S., Furuya K., Takeuchi I. Intracellular free calcium responses during chemotaxis of Dictyostelium cells. J Cell Sci. 1996 Nov;109(Pt 11):2673–2678. doi: 10.1242/jcs.109.11.2673. [DOI] [PubMed] [Google Scholar]
  45. Zhang B. X., Zhao H., Muallem S. Ca(2+)-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by agonist stimulation. J Biol Chem. 1993 May 25;268(15):10997–11001. [PubMed] [Google Scholar]
  46. van der Zee L., Nelemans A., den Hertog A. Arachidonic acid is functioning as a second messenger in activating the Ca2+ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells. Biochem J. 1995 Feb 1;305(Pt 3):859–864. doi: 10.1042/bj3050859. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES