Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 15;332(Pt 3):611–615. doi: 10.1042/bj3320611

Unmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode.

R Santucci 1, T Ferri 1, L Morpurgo 1, I Savini 1, L Avigliano 1
PMCID: PMC1219519  PMID: 9620861

Abstract

The unmediated electrochemistry of two large Cu-containing proteins, ascorbate oxidase and laccase, was investigated by direct-current cyclic voltammetry. Rapid heterogeneous electron transfer was achieved in the absence of promoters or mediators by trapping a small amount of protein within a solid, electrochemically inert, tributylmethyl phosphonium chloride membrane coating a gold electrode. The problems typical of proteins in solution, such as adsorption on the electrode surface, were avoided by this procedure. In anaerobic conditions, the cyclic voltammograms, run at a scan rate of up to 200 mV/s, showed the electron transfer process to be quasi-reversible and diffusion-controlled. The pH-dependent redox potentials (+360 mV and +400 mV against a normal hydrogen electrode at pH7.0 for ascorbate oxidase and laccase respectively and +390 mV and +410 mV at pH5.5) were similar to those of the free proteins. The same electrochemical behaviour was recorded for the type 2 Cu-depleted derivatives, which contain reduced type 3 Cu, whereas the apoproteins were electrochemically inactive. Under aerobic conditions the catalytic current intensity of holoprotein voltammograms increased up to approx. 2-fold at a low scanning rate, with unchanged redox potentials. The voltammograms of type 2 Cu-depleted proteins and of apoproteins were unaffected by the presence of oxygen. This suggests that electron uptake at the electrode surface involves type 1 Cu and that only in the presence of oxygen is the intramolecular electron transfer to other protein sites rapid enough to be observed. The analogy with available kinetic results is discussed.

Full Text

The Full Text of this article is available as a PDF (295.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostinelli E., Cervoni L., Giartosio A., Morpurgo L. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase. Biochem J. 1995 Mar 15;306(Pt 3):697–702. doi: 10.1042/bj3060697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allendorf M. D., Spira D. J., Solomon E. I. Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site. Proc Natl Acad Sci U S A. 1985 May;82(10):3063–3067. doi: 10.1073/pnas.82.10.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andréasson L. E., Reinhammar B. Kinetic studies of Rhus vernicifera laccase. Role of the metal centers in electron transfer. Biochim Biophys Acta. 1976 Oct 11;445(3):579–597. doi: 10.1016/0005-2744(76)90112-1. [DOI] [PubMed] [Google Scholar]
  4. Armstrong F. A., Allen H., Hill O., Walton N. J. Reactions of electron-transfer proteins at electrodes. Q Rev Biophys. 1985 Aug;18(3):261–322. doi: 10.1017/s0033583500000366. [DOI] [PubMed] [Google Scholar]
  5. Avigliano L., Gerosa P., Rotilio G., Finazzi Agrò A., Calabrese L., Mondovì B. Ascorbate oxidase. New method of purification of the enzyme from green zucchini squash and identity of its copper moiety with that of cucumber ascorbate oxidase. Ital J Biochem. 1972 Sep-Dec;21(5):248–255. [PubMed] [Google Scholar]
  6. Avigliano L., Rotilio G., Urbanelli S., Mondovi B., Agrò A. F. Anaerobic reaction of ascorbate oxidase with ascorbate. Arch Biochem Biophys. 1978 Jan 30;185(2):419–422. doi: 10.1016/0003-9861(78)90184-4. [DOI] [PubMed] [Google Scholar]
  7. Brunori M., Santucci R., Campanella L., Tranchida G. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins. Biochem J. 1989 Nov 15;264(1):301–304. doi: 10.1042/bj2640301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farver O., Pecht I. Low activation barriers characterize intramolecular electron transfer in ascorbate oxidase. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8283–8287. doi: 10.1073/pnas.89.17.8283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frew J. E., Hill H. A. Direct and indirect electron transfer between electrodes and redox proteins. Eur J Biochem. 1988 Mar 1;172(2):261–269. doi: 10.1111/j.1432-1033.1988.tb13882.x. [DOI] [PubMed] [Google Scholar]
  10. Ikeda O., Sakurai T. Electron transfer reaction of stellacyanin at a bare glassy carbon electrode. Eur J Biochem. 1994 Feb 1;219(3):813–819. doi: 10.1111/j.1432-1033.1994.tb18562.x. [DOI] [PubMed] [Google Scholar]
  11. Messerschmidt A., Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem. 1990 Jan 26;187(2):341–352. doi: 10.1111/j.1432-1033.1990.tb15311.x. [DOI] [PubMed] [Google Scholar]
  12. Messerschmidt A., Ladenstein R., Huber R., Bolognesi M., Avigliano L., Petruzzelli R., Rossi A., Finazzi-Agró A. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J Mol Biol. 1992 Mar 5;224(1):179–205. doi: 10.1016/0022-2836(92)90583-6. [DOI] [PubMed] [Google Scholar]
  13. Messerschmidt A., Rossi A., Ladenstein R., Huber R., Bolognesi M., Gatti G., Marchesini A., Petruzzelli R., Finazzi-Agró A. X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol. 1989 Apr 5;206(3):513–529. doi: 10.1016/0022-2836(89)90498-1. [DOI] [PubMed] [Google Scholar]
  14. Meyer T. E., Marchesini A., Cusanovich M. A., Tollin G. Direct measurement of intramolecular electron transfer between type I and type III copper centers in the multi-copper enzyme ascorbate oxidase and its type II copper-depleted and cyanide-inhibited forms. Biochemistry. 1991 May 7;30(18):4619–4623. doi: 10.1021/bi00232a037. [DOI] [PubMed] [Google Scholar]
  15. Morpurgo L., Graziani M. T., Desideri A., Rotilio G. Titrations with ferrocyanide of japanese-lacquer-tree (Rhus vernicifera) laccase and of the type 2 copper-depleted enzyme. Interrelation of the copper sites. Biochem J. 1980 May 1;187(2):367–370. doi: 10.1042/bj1870367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nassar A. E., Willis W. S., Rusling J. F. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem. 1995 Jul 15;67(14):2386–2392. doi: 10.1021/ac00110a010. [DOI] [PubMed] [Google Scholar]
  17. O'Neill P., Fielden E. M., Finazzi-Agrò A., Avigliano L. Pulse-radiolysis studies on the interaction of one-electron-reduced species with ascorbate oxidase in aqueous solution. Biochem J. 1983 Jan 1;209(1):167–174. doi: 10.1042/bj2090167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Neill P., Fielden E. M., Morpurgo L., Agostinelli E. Pulse-radiolysis studies on the interaction of one-electron reduced species with blue oxidases. Reduction of native and type-2-copper-depleted Vietnamese-lacquer-tree and Japanese-lacquer-tree laccases. Biochem J. 1984 Aug 15;222(1):71–76. doi: 10.1042/bj2220071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reinhammar B. R. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim Biophys Acta. 1972 Aug 17;275(2):245–259. doi: 10.1016/0005-2728(72)90045-x. [DOI] [PubMed] [Google Scholar]
  20. Reinhammar B. R., Vänngård T. I. The electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations. Eur J Biochem. 1971 Feb;18(4):463–468. doi: 10.1111/j.1432-1033.1971.tb01264.x. [DOI] [PubMed] [Google Scholar]
  21. Reinhammar B. Purification and properties of laccase and stellacyanin from Rhus vernicifera. Biochim Biophys Acta. 1970 Apr 7;205(1):35–47. doi: 10.1016/0005-2728(70)90059-9. [DOI] [PubMed] [Google Scholar]
  22. Salamon Z., Hazzard J. T., Tollin G. Direct measurement of cyclic current-voltage responses of integral membrane proteins at a self-assembled lipid-bilayer-modified electrode: cytochrome f and cytochrome c oxidase. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6420–6423. doi: 10.1073/pnas.90.14.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Santucci R., Faraoni A., Campanella L., Tranchida G., Brunori M. Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode. Biochem J. 1991 Feb 1;273(Pt 3):783–786. doi: 10.1042/bj2730783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Savini I., Morpurgo L., Avigliano L. Full, reversible copper removal from ascorbate oxidase. Biochem Biophys Res Commun. 1985 Sep 30;131(3):1251–1255. doi: 10.1016/0006-291x(85)90225-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES