Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 15;332(Pt 3):681–687. doi: 10.1042/bj3320681

Functional analysis of the human annexin I and VI gene promoters.

S R Donnelly 1, S E Moss 1
PMCID: PMC1219528  PMID: 9620870

Abstract

To gain insight into the molecular basis of annexin gene expression we have analysed the annexin I and VI gene promoters. A previously described 881 bp sequence immediately upstream of the annexin I transcription start site and a similar size fragment proximal to the annexin VI transcription start site both drove expression of the luciferase reporter gene in fibroblasts and epithelial cells. Neither promoter displayed any sensitivity to dexamethasone, suggesting that the putative glucocorticoid response element in the annexin I promoter is non-functional. Consistent with this, endogenous annexin I gene expression was unaffected by dexamethasone at the mRNA and protein levels in A431 cells. A series of 5' deletions of the two promoters were examined to define the minimal active sequences. For annexin I this corresponded to a sequence approx. 150 bp upstream of the transcription start site that included CAAT and TATA boxes. Unexpectedly, the annexin VI promoter, which also contains CAAT and TATA boxes, was fully active in the absence of these elements, a 53 bp sequence between these boxes and the transcription start site having maximal activity. Electrophoretic mobility-shift assays with nuclear extracts from A431 and HeLa cells with probes corresponding to this region revealed an SP1-binding site. These results show that the annexin I and VI genes have individual modes of transcriptional regulation and that if either annexin I or annexin VI has an anti-inflammatory role, then this is in the absence of steroid-induced gene expression.

Full Text

The Full Text of this article is available as a PDF (555.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahluwalia A., Mohamed R. W., Flower R. J. Induction of lipocortin 1 by topical steroid in rat skin. Biochem Pharmacol. 1994 Oct 18;48(8):1647–1654. doi: 10.1016/0006-2952(94)90210-0. [DOI] [PubMed] [Google Scholar]
  2. Andrews N. C., Faller D. V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991 May 11;19(9):2499–2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coméra C., Russo-Marie F. Glucocorticoid-induced annexin 1 secretion by monocytes and peritoneal leukocytes. Br J Pharmacol. 1995 Jul;115(6):1043–1047. doi: 10.1111/j.1476-5381.1995.tb15916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
  5. Davidson F. F., Dennis E. A., Powell M., Glenney J. R., Jr Inhibition of phospholipase A2 by "lipocortins" and calpactins. An effect of binding to substrate phospholipids. J Biol Chem. 1987 Feb 5;262(4):1698–1705. [PubMed] [Google Scholar]
  6. Davis A. J., Butt J. T., Walker J. H., Moss S. E., Gawler D. J. The Ca2+-dependent lipid binding domain of P120GAP mediates protein-protein interactions with Ca2+-dependent membrane-binding proteins. Evidence for a direct interaction between annexin VI and P120GAP. J Biol Chem. 1996 Oct 4;271(40):24333–24336. doi: 10.1074/jbc.271.40.24333. [DOI] [PubMed] [Google Scholar]
  7. Du H., Roy A. L., Roeder R. G. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J. 1993 Feb;12(2):501–511. doi: 10.1002/j.1460-2075.1993.tb05682.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flower R. J. Eleventh Gaddum memorial lecture. Lipocortin and the mechanism of action of the glucocorticoids. Br J Pharmacol. 1988 Aug;94(4):987–1015. doi: 10.1111/j.1476-5381.1988.tb11614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Francia G., Mitchell S. D., Moss S. E., Hanby A. M., Marshall J. F., Hart I. R. Identification by differential display of annexin-VI, a gene differentially expressed during melanoma progression. Cancer Res. 1996 Sep 1;56(17):3855–3858. [PubMed] [Google Scholar]
  10. Gao Y., Horseman N. D. Structural and functional divergences of the columbid annexin I-encoding cp37 and cp35 genes. Gene. 1994 Jun 10;143(2):179–186. doi: 10.1016/0378-1119(94)90094-9. [DOI] [PubMed] [Google Scholar]
  11. Gebicke-Haerter P. J., Schobert A., Dieter P., Honegger P., Hertting G. Regulation and glucocorticoid-independent induction of lipocortin I in cultured astrocytes. J Neurochem. 1991 Jul;57(1):175–183. doi: 10.1111/j.1471-4159.1991.tb02113.x. [DOI] [PubMed] [Google Scholar]
  12. Gerke V., Moss S. E. Annexins and membrane dynamics. Biochim Biophys Acta. 1997 Jun 27;1357(2):129–154. doi: 10.1016/s0167-4889(97)00038-4. [DOI] [PubMed] [Google Scholar]
  13. Gunteski-Hamblin A. M., Song G., Walsh R. A., Frenzke M., Boivin G. P., Dorn G. W., 2nd, Kaetzel M. A., Horseman N. D., Dedman J. R. Annexin VI overexpression targeted to heart alters cardiomyocyte function in transgenic mice. Am J Physiol. 1996 Mar;270(3 Pt 2):H1091–H1100. doi: 10.1152/ajpheart.1996.270.3.H1091. [DOI] [PubMed] [Google Scholar]
  14. Huang K. S., Wallner B. P., Mattaliano R. J., Tizard R., Burne C., Frey A., Hession C., McGray P., Sinclair L. K., Chow E. P. Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase. Cell. 1986 Jul 18;46(2):191–199. doi: 10.1016/0092-8674(86)90736-1. [DOI] [PubMed] [Google Scholar]
  15. Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S. T. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol. 1994 Jan;14(1):116–127. doi: 10.1128/mcb.14.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kovacic R. T., Tizard R., Cate R. L., Frey A. Z., Wallner B. P. Correlation of gene and protein structure of rat and human lipocortin I. Biochemistry. 1991 Sep 17;30(37):9015–9021. doi: 10.1021/bi00101a015. [DOI] [PubMed] [Google Scholar]
  17. Lin H. C., Südhof T. C., Anderson R. G. Annexin VI is required for budding of clathrin-coated pits. Cell. 1992 Jul 24;70(2):283–291. doi: 10.1016/0092-8674(92)90102-i. [DOI] [PubMed] [Google Scholar]
  18. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  19. Roy A. L., Meisterernst M., Pognonec P., Roeder R. G. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature. 1991 Nov 21;354(6350):245–248. doi: 10.1038/354245a0. [DOI] [PubMed] [Google Scholar]
  20. Smith P. D., Davies A., Crumpton M. J., Moss S. E. Structure of the human annexin VI gene. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2713–2717. doi: 10.1073/pnas.91.7.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith P. D., Moss S. E. Z-DNA-forming sequences at a putative duplication site in the human annexin VI-encoding gene. Gene. 1994 Jan 28;138(1-2):239–242. doi: 10.1016/0378-1119(94)90815-x. [DOI] [PubMed] [Google Scholar]
  22. Smythe E., Smith P. D., Jacob S. M., Theobald J., Moss S. E. Endocytosis occurs independently of annexin VI in human A431 cells. J Cell Biol. 1994 Feb;124(3):301–306. doi: 10.1083/jcb.124.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Solito E., Raugei G., Melli M., Parente L. Dexamethasone induces the expression of the mRNA of lipocortin 1 and 2 and the release of lipocortin 1 and 5 in differentiated, but not undifferentiated U-937 cells. FEBS Lett. 1991 Oct 21;291(2):238–244. doi: 10.1016/0014-5793(91)81293-h. [DOI] [PubMed] [Google Scholar]
  24. Theobald J., Hanby A., Patel K., Moss S. E. Annexin VI has tumour-suppressor activity in human A431 squamous epithelial carcinoma cells. Br J Cancer. 1995 Apr;71(4):786–788. doi: 10.1038/bjc.1995.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Theobald J., Smith P. D., Jacob S. M., Moss S. E. Expression of annexin VI in A431 carcinoma cells suppresses proliferation: a possible role for annexin VI in cell growth regulation. Biochim Biophys Acta. 1994 Sep 29;1223(3):383–390. doi: 10.1016/0167-4889(94)90099-x. [DOI] [PubMed] [Google Scholar]
  26. Violette S. M., King I., Browning J. L., Pepinsky R. B., Wallner B. P., Sartorelli A. C. Role of lipocortin I in the glucocorticoid induction of the terminal differentiation of a human squamous carcinoma. J Cell Physiol. 1990 Jan;142(1):70–77. doi: 10.1002/jcp.1041420110. [DOI] [PubMed] [Google Scholar]
  27. Wallner B. P., Mattaliano R. J., Hession C., Cate R. L., Tizard R., Sinclair L. K., Foeller C., Chow E. P., Browing J. L., Ramachandran K. L. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986 Mar 6;320(6057):77–81. doi: 10.1038/320077a0. [DOI] [PubMed] [Google Scholar]
  28. William F., Mroczkowski B., Cohen S., Kraft A. S. Differentiation of HL-60 cells is associated with an increase in the 35-kDa protein lipocortin I. J Cell Physiol. 1988 Dec;137(3):402–410. doi: 10.1002/jcp.1041370303. [DOI] [PubMed] [Google Scholar]
  29. Wong W. T., Frost S. C., Nick H. S. Protein-synthesis-dependent induction of annexin I by glucocorticoid. Biochem J. 1991 Apr 15;275(Pt 2):313–319. doi: 10.1042/bj2750313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xu Y. H., Horseman N. D. Nuclear proteins and prolactin-induced annexin Icp35 gene transcription. Mol Endocrinol. 1992 Mar;6(3):375–383. doi: 10.1210/mend.6.3.1533897. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES