Abstract
Small heat-shock proteins (sHSPs) are widely expressed 25-28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-delta. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-delta is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-delta using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-delta effectively catalysed the phosphorylation of sHSP in vitro, and PKC-alpha was 30-50% as effective as an HSP-kinase; other PKCs tested (beta1, beta2, epsilon and zeta) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the observation of enhanced luteal HSP-27 phosphorylation in vivo, in late pregnancy, when PKC-delta is abundant and active, suggests that select PKC family members contribute to sHSP phosphorylation events in vivo.
Full Text
The Full Text of this article is available as a PDF (553.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlers A., Belka C., Gaestel M., Lamping N., Sott C., Herrmann F., Brach M. A. Interleukin-1-induced intracellular signaling pathways converge in the activation of mitogen-activated protein kinase and mitogen-activated protein kinase-activated protein kinase 2 and the subsequent phosphorylation of the 27-kilodalton heat shock protein in monocytic cells. Mol Pharmacol. 1994 Dec;46(6):1077–1083. [PubMed] [Google Scholar]
- Arrigo A. P. Tumor necrosis factor induces the rapid phosphorylation of the mammalian heat shock protein hsp28. Mol Cell Biol. 1990 Mar;10(3):1276–1280. doi: 10.1128/mcb.10.3.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cano E., Doza Y. N., Ben-Levy R., Cohen P., Mahadevan L. C. Identification of anisomycin-activated kinases p45 and p55 in murine cells as MAPKAP kinase-2. Oncogene. 1996 Feb 15;12(4):805–812. [PubMed] [Google Scholar]
- Clifton A. D., Young P. R., Cohen P. A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. FEBS Lett. 1996 Sep 2;392(3):209–214. doi: 10.1016/0014-5793(96)00816-2. [DOI] [PubMed] [Google Scholar]
- Cotto J. J., Kline M., Morimoto R. I. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem. 1996 Feb 16;271(7):3355–3358. doi: 10.1074/jbc.271.7.3355. [DOI] [PubMed] [Google Scholar]
- Cutler R. E., Jr, Maizels E. T., Brooks E. J., Mizuno K., Ohno S., Hunzicker-Dunn M. Regulation of delta protein kinase C during rat ovarian differentiation. Biochim Biophys Acta. 1993 Nov 24;1179(3):260–270. doi: 10.1016/0167-4889(93)90081-y. [DOI] [PubMed] [Google Scholar]
- Cutler R. E., Jr, Maizels E. T., Hunzicker-Dunn M. Delta protein kinase-C in the rat ovary: estrogen regulation and localization. Endocrinology. 1994 Oct;135(4):1669–1678. doi: 10.1210/endo.135.4.7925131. [DOI] [PubMed] [Google Scholar]
- Das S., Maizels E. T., DeManno D., St Clair E., Adam S. A., Hunzicker-Dunn M. A stimulatory role of cyclic adenosine 3',5'-monophosphate in follicle-stimulating hormone-activated mitogen-activated protein kinase signaling pathway in rat ovarian granulosa cells. Endocrinology. 1996 Mar;137(3):967–974. doi: 10.1210/endo.137.3.8603610. [DOI] [PubMed] [Google Scholar]
- Dekker L. V., Parker P. J. Regulated binding of the protein kinase C substrate GAP-43 to the V0/C2 region of protein kinase C-delta. J Biol Chem. 1997 May 9;272(19):12747–12753. doi: 10.1074/jbc.272.19.12747. [DOI] [PubMed] [Google Scholar]
- Denhardt D. T. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J. 1996 Sep 15;318(Pt 3):729–747. doi: 10.1042/bj3180729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faucher C., Capdevielle J., Canal I., Ferrara P., Mazarguil H., McGuire W. L., Darbon J. M. The 28-kDa protein whose phosphorylation is induced by protein kinase C activators in MCF-7 cells belongs to the family of low molecular mass heat shock proteins and is the estrogen-regulated 24-kDa protein. J Biol Chem. 1993 Jul 15;268(20):15168–15173. [PubMed] [Google Scholar]
- Fields P. A. Intracellular localization of relaxin in membrane-bound granules in the pregnant rat luteal cell. Biol Reprod. 1984 Apr;30(3):753–762. doi: 10.1095/biolreprod30.3.753. [DOI] [PubMed] [Google Scholar]
- Foltz I. N., Lee J. C., Young P. R., Schrader J. W. Hemopoietic growth factors with the exception of interleukin-4 activate the p38 mitogen-activated protein kinase pathway. J Biol Chem. 1997 Feb 7;272(6):3296–3301. doi: 10.1074/jbc.272.6.3296. [DOI] [PubMed] [Google Scholar]
- Freshney N. W., Rawlinson L., Guesdon F., Jones E., Cowley S., Hsuan J., Saklatvala J. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell. 1994 Sep 23;78(6):1039–1049. doi: 10.1016/0092-8674(94)90278-x. [DOI] [PubMed] [Google Scholar]
- Gaestel M., Schröder W., Benndorf R., Lippmann C., Buchner K., Hucho F., Erdmann V. A., Bielka H. Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem. 1991 Aug 5;266(22):14721–14724. [PubMed] [Google Scholar]
- Geng Y., Valbracht J., Lotz M. Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. J Clin Invest. 1996 Nov 15;98(10):2425–2430. doi: 10.1172/JCI119056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guay J., Lambert H., Gingras-Breton G., Lavoie J. N., Huot J., Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci. 1997 Feb;110(Pt 3):357–368. doi: 10.1242/jcs.110.3.357. [DOI] [PubMed] [Google Scholar]
- Guesdon F., Freshney N., Waller R. J., Rawlinson L., Saklatvala J. Interleukin 1 and tumor necrosis factor stimulate two novel protein kinases that phosphorylate the heat shock protein hsp27 and beta-casein. J Biol Chem. 1993 Feb 25;268(6):4236–4243. [PubMed] [Google Scholar]
- Hidaka H., Watanabe M., Kobayashi R. Properties and use of H-series compounds as protein kinase inhibitors. Methods Enzymol. 1991;201:328–339. doi: 10.1016/0076-6879(91)01029-2. [DOI] [PubMed] [Google Scholar]
- Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunzicker-Dunn M., Cutler R. E., Jr, Maizels E. T., DeManno D. A., Lamm M. L., Erlichman J., Sanwal B. D., LaBarbera A. R. Isozymes of cAMP-dependent protein kinase present in the rat corpus luteum. J Biol Chem. 1991 Apr 15;266(11):7166–7175. [PubMed] [Google Scholar]
- Jiang Y., Chen C., Li Z., Guo W., Gegner J. A., Lin S., Han J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 1996 Jul 26;271(30):17920–17926. doi: 10.1074/jbc.271.30.17920. [DOI] [PubMed] [Google Scholar]
- Kasahara K., Ikuta T., Chida K., Asakura R., Kuroki T. Rapid phosphorylation of 28-kDa heat-shock protein by treatment with okadaic acid and phorbol ester of BALB/MK-2 mouse keratinocytes. Eur J Biochem. 1993 May 1;213(3):1101–1107. doi: 10.1111/j.1432-1033.1993.tb17859.x. [DOI] [PubMed] [Google Scholar]
- Kato K., Hasegawa K., Goto S., Inaguma Y. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem. 1994 Apr 15;269(15):11274–11278. [PubMed] [Google Scholar]
- Kielbassa K., Müller H. J., Meyer H. E., Marks F., Gschwendt M. Protein kinase C delta-specific phosphorylation of the elongation factor eEF-alpha and an eEF-1 alpha peptide at threonine 431. J Biol Chem. 1995 Mar 17;270(11):6156–6162. doi: 10.1074/jbc.270.11.6156. [DOI] [PubMed] [Google Scholar]
- Kindas-Mügge I., Herbacek I., Jantschitsch C., Micksche M., Trautinger F. Modification of growth and tumorigenicity in epidermal cell lines by DNA-mediated gene transfer of M(r) 27,000 heat shock protein (hsp27). Cell Growth Differ. 1996 Sep;7(9):1167–1174. [PubMed] [Google Scholar]
- Landry J., Huot J. Modulation of actin dynamics during stress and physiological stimulation by a signaling pathway involving p38 MAP kinase and heat-shock protein 27. Biochem Cell Biol. 1995 Sep-Oct;73(9-10):703–707. doi: 10.1139/o95-078. [DOI] [PubMed] [Google Scholar]
- Landry J., Lambert H., Zhou M., Lavoie J. N., Hickey E., Weber L. A., Anderson C. W. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem. 1992 Jan 15;267(2):794–803. [PubMed] [Google Scholar]
- Ludwig S., Engel K., Hoffmeyer A., Sithanandam G., Neufeld B., Palm D., Gaestel M., Rapp U. R. 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase, is targeted by three MAP kinase pathways. Mol Cell Biol. 1996 Dec;16(12):6687–6697. doi: 10.1128/mcb.16.12.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maizels E. T., Miller J. B., Cutler R. E., Jr, Jackiw V., Carney E. M., Kern L., Hunzicker-Dunn M. Calcium-independent phospholipid/diolein-dependent phosphorylation of a soluble ovarian Mr 80,000 substrate protein: biochemical characteristics. Biochim Biophys Acta. 1990 Sep 24;1054(3):285–296. doi: 10.1016/0167-4889(90)90099-y. [DOI] [PubMed] [Google Scholar]
- Maizels E. T., Miller J. B., Cutler R. E., Jr, Jackiw V., Carney E. M., Mizuno K., Ohno S., Hunzicker-Dunn M. Estrogen modulates Ca(2+)-independent lipid-stimulated kinase in the rabbit corpus luteum of pseudopregnancy. Identification of luteal estrogen-modulated lipid-stimulated kinase as protein kinase C delta. J Biol Chem. 1992 Aug 25;267(24):17061–17068. [PubMed] [Google Scholar]
- McLaughlin M. M., Kumar S., McDonnell P. C., Van Horn S., Lee J. C., Livi G. P., Young P. R. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem. 1996 Apr 5;271(14):8488–8492. doi: 10.1074/jbc.271.14.8488. [DOI] [PubMed] [Google Scholar]
- Mehlen P., Kretz-Remy C., Préville X., Arrigo A. P. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J. 1996 Jun 3;15(11):2695–2706. [PMC free article] [PubMed] [Google Scholar]
- Minowada G., Welch W. Variation in the expression and/or phosphorylation of the human low molecular weight stress protein during in vitro cell differentiation. J Biol Chem. 1995 Mar 31;270(13):7047–7054. doi: 10.1074/jbc.270.13.7047. [DOI] [PubMed] [Google Scholar]
- Nakanishi H., Exton J. H. Purification and characterization of the zeta isoform of protein kinase C from bovine kidney. J Biol Chem. 1992 Aug 15;267(23):16347–16354. [PubMed] [Google Scholar]
- Nishikawa K., Toker A., Johannes F. J., Songyang Z., Cantley L. C. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem. 1997 Jan 10;272(2):952–960. doi: 10.1074/jbc.272.2.952. [DOI] [PubMed] [Google Scholar]
- Niswender G. D., Juengel J. L., McGuire W. J., Belfiore C. J., Wiltbank M. C. Luteal function: the estrous cycle and early pregnancy. Biol Reprod. 1994 Feb;50(2):239–247. doi: 10.1095/biolreprod50.2.239. [DOI] [PubMed] [Google Scholar]
- Olivier A. R., Parker P. J. Expression and characterization of protein kinase C-delta. Eur J Biochem. 1991 Sep 15;200(3):805–810. doi: 10.1111/j.1432-1033.1991.tb16248.x. [DOI] [PubMed] [Google Scholar]
- Regazzi R., Eppenberger U., Fabbro D. The 27,000 daltons stress proteins are phosphorylated by protein kinase C during the tumor promoter-mediated growth inhibition of human mammary carcinoma cells. Biochem Biophys Res Commun. 1988 Apr 15;152(1):62–68. doi: 10.1016/s0006-291x(88)80680-6. [DOI] [PubMed] [Google Scholar]
- Rothchild I. The regulation of the mammalian corpus luteum. Recent Prog Horm Res. 1981;37:183–298. doi: 10.1016/b978-0-12-571137-1.50009-8. [DOI] [PubMed] [Google Scholar]
- Rouse J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., Nebreda A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994 Sep 23;78(6):1027–1037. doi: 10.1016/0092-8674(94)90277-1. [DOI] [PubMed] [Google Scholar]
- Saklatvala J., Kaur P., Guesdon F. Phosphorylation of the small heat-shock protein is regulated by interleukin 1, tumour necrosis factor, growth factors, bradykinin and ATP. Biochem J. 1991 Aug 1;277(Pt 3):635–642. doi: 10.1042/bj2770635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shanmugam M., Krett N. L., Peters C. A., Maizels E. T., Murad F. M., Kawakatsu H., Rosen S. T., Hunzicker-Dunn M. Association of PKC delta and active Src in PMA-treated MCF-7 human breast cancer cells. Oncogene. 1998 Apr 2;16(13):1649–1654. doi: 10.1038/sj.onc.1201684. [DOI] [PubMed] [Google Scholar]
- Sherwood O. D., Crnekovic V. E., Gordon W. L., Rutherford J. E. Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology. 1980 Sep;107(3):691–698. doi: 10.1210/endo-107-3-691. [DOI] [PubMed] [Google Scholar]
- Smoyer W. E., Gupta A., Mundel P., Ballew J. D., Welsh M. J. Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome. J Clin Invest. 1996 Jun 15;97(12):2697–2704. doi: 10.1172/JCI118723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spector N. L., Ryan C., Samson W., Levine H., Nadler L. M., Arrigo A. P. Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J Cell Physiol. 1993 Sep;156(3):619–625. doi: 10.1002/jcp.1041560322. [DOI] [PubMed] [Google Scholar]
- Stokoe D., Caudwell B., Cohen P. T., Cohen P. The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem J. 1993 Dec 15;296(Pt 3):843–849. doi: 10.1042/bj2960843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokoe D., Engel K., Campbell D. G., Cohen P., Gaestel M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 1992 Nov 30;313(3):307–313. doi: 10.1016/0014-5793(92)81216-9. [DOI] [PubMed] [Google Scholar]
- Taylor M. J., Clark C. L. Stimulatory effect of phorbol diester on relaxin release by porcine luteal cells in culture. Biol Reprod. 1988 Oct;39(3):743–750. doi: 10.1095/biolreprod39.3.743. [DOI] [PubMed] [Google Scholar]
- Welch W. J. Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells all result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins. J Biol Chem. 1985 Mar 10;260(5):3058–3062. [PubMed] [Google Scholar]
- Wesselborg S., Bauer M. K., Vogt M., Schmitz M. L., Schulze-Osthoff K. Activation of transcription factor NF-kappaB and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J Biol Chem. 1997 May 9;272(19):12422–12429. doi: 10.1074/jbc.272.19.12422. [DOI] [PubMed] [Google Scholar]
- Zhou M., Lambert H., Landry J. Transient activation of a distinct serine protein kinase is responsible for 27-kDa heat shock protein phosphorylation in mitogen-stimulated and heat-shocked cells. J Biol Chem. 1993 Jan 5;268(1):35–43. [PubMed] [Google Scholar]
- Zhu Y., O'Neill S., Saklatvala J., Tassi L., Mendelsohn M. E. Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood. 1994 Dec 1;84(11):3715–3723. [PubMed] [Google Scholar]