Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 15;332(Pt 3):773–780. doi: 10.1042/bj3320773

Transcript heterogeneity of the human reduced folate carrier results from the use of multiple promoters and variable splicing of alternative upstream exons.

L Zhang 1, S C Wong 1, L H Matherly 1
PMCID: PMC1219540  PMID: 9620882

Abstract

We previously identified three separate cDNAs (KS6, KS32 and KS43) for the human reduced folate carrier (RFC) with unique 5' untranslated regions (5' UTRs) [Wong, Proefke, Bhushan and Matherly (1995) J. Biol. Chem. 270, 17468-17475]. Multiple RFC transcripts were confirmed in CCRF-CEM cells and transport-up-regulated K562.4CF cells by 5' rapid amplification of cDNA ends (5' RACE) and/or primer extension analysis. Two groups of 5' RACE clones were identified, one containing a variable length sequence identical with the KS43 cDNA 5' UTR, and another consisting of variants of the KS32 5' UTR, apparently generated by alternative splicing. The 5' UTR for the KS6 cDNA was not detected. A single band was detected on Southern blots of CCRF-CEM genomic DNA probed with a 326 bp genomic fragment common to all three cDNA species. The unique 5' UTRs for the KS43 and KS32 transcripts were localized to separate non-coding exons (exons 1 and 2 respectively), upstream from a large (approx. 3.42 kb) intron; the KS6 5'UTR also mapped to exon 1. Exons 1 and 2 were contiguous with 996 and 342 bp GC-rich 5' flanking regions (designated Pro43 and Pro32 respectively) that contained multiple SP1 and AP2 but no TATA or CAAT boxes. Both Pro43 and Pro32 exhibited strong promoter activities when cloned in front of a luciferase reporter gene and transfected into HT1080 and K562 cells. By an analysis of promoter deletion mutants we identified two 89 bp tandem repeats that seemed to increase Pro32 activity, and a 240 bp distal sequence that repressed Pro43 activity. Taken together, our results show that multiple human RFC transcripts are encoded by a single gene locus and that the heterogeneous 5' UTRs result from multiple transcriptional starts and variable splicing of alternative non-coding exons transcribed from separate promoters.

Full Text

The Full Text of this article is available as a PDF (560.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayoubi T. A., Van De Ven W. J. Regulation of gene expression by alternative promoters. FASEB J. 1996 Mar;10(4):453–460. [PubMed] [Google Scholar]
  2. Azizkhan J. C., Jensen D. E., Pierce A. J., Wade M. Transcription from TATA-less promoters: dihydrofolate reductase as a model. Crit Rev Eukaryot Gene Expr. 1993;3(4):229–254. [PubMed] [Google Scholar]
  3. Brigle K. E., Spinella M. J., Sierra E. E., Goldman I. D. Characterization of a mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. J Biol Chem. 1995 Sep 29;270(39):22974–22979. doi: 10.1074/jbc.270.39.22974. [DOI] [PubMed] [Google Scholar]
  4. Brigle K. E., Spinella M. J., Sierra E. E., Goldman I. D. Organization of the murine reduced folate carrier gene and identification of variant splice forms. Biochim Biophys Acta. 1997 Aug 7;1353(2):191–198. doi: 10.1016/s0167-4781(97)00082-1. [DOI] [PubMed] [Google Scholar]
  5. Dixon K. H., Lanpher B. C., Chiu J., Kelley K., Cowan K. H. A novel cDNA restores reduced folate carrier activity and methotrexate sensitivity to transport deficient cells. J Biol Chem. 1994 Jan 7;269(1):17–20. [PubMed] [Google Scholar]
  6. Goldman I. D., Matherly L. H. The cellular pharmacology of methotrexate. Pharmacol Ther. 1985;28(1):77–102. doi: 10.1016/0163-7258(85)90083-x. [DOI] [PubMed] [Google Scholar]
  7. Gong M., Yess J., Connolly T., Ivy S. P., Ohnuma T., Cowan K. H., Moscow J. A. Molecular mechanism of antifolate transport-deficiency in a methotrexate-resistant MOLT-3 human leukemia cell line. Blood. 1997 Apr 1;89(7):2494–2499. [PubMed] [Google Scholar]
  8. Gorlick R., Goker E., Trippett T., Steinherz P., Elisseyeff Y., Mazumdar M., Flintoff W. F., Bertino J. R. Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood. 1997 Feb 1;89(3):1013–1018. [PubMed] [Google Scholar]
  9. Matherly L. H., Angeles S. M., Czajkowski C. A. Characterization of transport-mediated methotrexate resistance in human tumor cells with antibodies to the membrane carrier for methotrexate and tetrahydrofolate cofactors. J Biol Chem. 1992 Nov 15;267(32):23253–23260. [PubMed] [Google Scholar]
  10. Matherly L. H., Czajkowski C. A., Angeles S. M. Identification of a highly glycosylated methotrexate membrane carrier in K562 human erythroleukemia cells up-regulated for tetrahydrofolate cofactor and methotrexate transport. Cancer Res. 1991 Jul 1;51(13):3420–3426. [PubMed] [Google Scholar]
  11. Moscow J. A., Gong M., He R., Sgagias M. K., Dixon K. H., Anzick S. L., Meltzer P. S., Cowan K. H. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res. 1995 Sep 1;55(17):3790–3794. [PubMed] [Google Scholar]
  12. Murray R. C., Williams F. M., Flintoff W. F. Structural organization of the reduced folate carrier gene in Chinese hamster ovary cells. J Biol Chem. 1996 Aug 9;271(32):19174–19179. doi: 10.1074/jbc.271.32.19174. [DOI] [PubMed] [Google Scholar]
  13. Nguyen T. T., Dyer D. L., Dunning D. D., Rubin S. A., Grant K. E., Said H. M. Human intestinal folate transport: cloning, expression, and distribution of complementary RNA. Gastroenterology. 1997 Mar;112(3):783–791. doi: 10.1053/gast.1997.v112.pm9041240. [DOI] [PubMed] [Google Scholar]
  14. Prasad P. D., Ramamoorthy S., Leibach F. H., Ganapathy V. Molecular cloning of the human placental folate transporter. Biochem Biophys Res Commun. 1995 Jan 17;206(2):681–687. doi: 10.1006/bbrc.1995.1096. [DOI] [PubMed] [Google Scholar]
  15. Prestridge D. S. SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci. 1991 Apr;7(2):203–206. doi: 10.1093/bioinformatics/7.2.203. [DOI] [PubMed] [Google Scholar]
  16. Sirotnak F. M., Moccio D. M., Kelleher L. E., Goutas L. J. Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo. Cancer Res. 1981 Nov;41(11 Pt 1):4447–4452. [PubMed] [Google Scholar]
  17. Sirotnak F. M. Obligate genetic expression in tumor cells of a fetal membrane property mediating "folate" transport: biological significance and implications for improved therapy of human cancer. Cancer Res. 1985 Sep;45(9):3992–4000. [PubMed] [Google Scholar]
  18. Tolner B., Roy K., Sirotnak F. M. Organization, structure and alternate splicing of the murine RFC-1 gene encoding a folate transporter. Gene. 1997 Apr 11;189(1):1–7. doi: 10.1016/s0378-1119(96)00676-2. [DOI] [PubMed] [Google Scholar]
  19. Williams F. M., Flintoff W. F. Isolation of a human cDNA that complements a mutant hamster cell defective in methotrexate uptake. J Biol Chem. 1995 Feb 17;270(7):2987–2992. doi: 10.1074/jbc.270.7.2987. [DOI] [PubMed] [Google Scholar]
  20. Williams F. M., Murray R. C., Underhill T. M., Flintoff W. F. Isolation of a hamster cDNA clone coding for a function involved in methotrexate uptake. J Biol Chem. 1994 Feb 25;269(8):5810–5816. [PubMed] [Google Scholar]
  21. Wingender E. Compilation of transcription regulating proteins. Nucleic Acids Res. 1988 Mar 25;16(5):1879–1902. doi: 10.1093/nar/16.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wong S. C., McQuade R., Proefke S. A., Bhushan A., Matherly L. H. Human K562 transfectants expressing high levels of reduced folate carrier but exhibiting low transport activity. Biochem Pharmacol. 1997 Jan 24;53(2):199–206. doi: 10.1016/s0006-2952(96)00710-1. [DOI] [PubMed] [Google Scholar]
  23. Wong S. C., Proefke S. A., Bhushan A., Matherly L. H. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem. 1995 Jul 21;270(29):17468–17475. doi: 10.1074/jbc.270.29.17468. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES