Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 15;332(Pt 3):781–787. doi: 10.1042/bj3320781

G-Protein binding domains of the angiotensin II AT1A receptors mapped with synthetic peptides selected from the receptor sequence.

H Kai 1, R W Alexander 1, M Ushio-Fukai 1, P R Lyons 1, M Akers 1, K K Griendling 1
PMCID: PMC1219541  PMID: 9620883

Abstract

The vascular angiotensin II type 1 receptor (AT1AR) is a member of the G-protein-coupled receptor superfamily. We mapped the G-protein binding domains of the AT1AR using synthetic peptides selected from the receptor sequence, which interfere with AT1AR-G-protein coupling. Membrane GTPase activity was used as a measure of the functional coupling in rat vascular smooth muscle cells. Peptides corresponding to the N-terminal region of the second intracellular loop (residues 125-137), the N-terminal region of the third intracellular loop (217-227) and the juxtamembranous region of the C-terminal tail (304-316) inhibited angiotensin II-induced GTPase activation by 30%, 30%, and 70%, respectively. The latter two domains (217-227 and 304-316) are predicted to form amphiphilic alpha-helices. Only the peptide representing residues 217-227 stimulated basal activity (45%). No synthetic peptide had a significant effect on either the number or the affinity of the AT1AR binding. These observations indicate that domains of the second and third regions and the cytoplasmic tail of the AT1AR interact with G-proteins, and that multiple contacts with these receptor domains may be important for binding and activation of the G-proteins.

Full Text

The Full Text of this article is available as a PDF (466.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cerione R. A., Codina J., Benovic J. L., Lefkowitz R. J., Birnbaumer L., Caron M. G. The mammalian beta 2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry. 1984 Sep 25;23(20):4519–4525. doi: 10.1021/bi00315a003. [DOI] [PubMed] [Google Scholar]
  2. Cheung A. H., Huang R. R., Graziano M. P., Strader C. D. Specific activation of Gs by synthetic peptides corresponding to an intracellular loop of the beta-adrenergic receptor. FEBS Lett. 1991 Feb 25;279(2):277–280. doi: 10.1016/0014-5793(91)80167-2. [DOI] [PubMed] [Google Scholar]
  3. Cotecchia S., Exum S., Caron M. G., Lefkowitz R. J. Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2896–2900. doi: 10.1073/pnas.87.8.2896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dalman H. M., Neubig R. R. Two peptides from the alpha 2A-adrenergic receptor alter receptor G protein coupling by distinct mechanisms. J Biol Chem. 1991 Jun 15;266(17):11025–11029. [PubMed] [Google Scholar]
  5. Franzoni L., Nicastro G., Pertinhez T. A., Tatò M., Nakaie C. R., Paiva A. C., Schreier S., Spisni A. Structure of the C-terminal fragment 300-320 of the rat angiotensin II AT1A receptor and its relevance with respect to G-protein coupling. J Biol Chem. 1997 Apr 11;272(15):9734–9741. doi: 10.1074/jbc.272.15.9734. [DOI] [PubMed] [Google Scholar]
  6. Fraser C. M., Chung F. Z., Wang C. D., Venter J. C. Site-directed mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5478–5482. doi: 10.1073/pnas.85.15.5478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fraser C. M., Wang C. D., Robinson D. A., Gocayne J. D., Venter J. C. Site-directed mutagenesis of m1 muscarinic acetylcholine receptors: conserved aspartic acids play important roles in receptor function. Mol Pharmacol. 1989 Dec;36(6):840–847. [PubMed] [Google Scholar]
  8. Griendling K. K., Taubman M. B., Akers M., Mendlowitz M., Alexander R. W. Characterization of phosphatidylinositol-specific phospholipase C from cultured vascular smooth muscle cells. J Biol Chem. 1991 Aug 15;266(23):15498–15504. [PubMed] [Google Scholar]
  9. Gutowski S., Smrcka A., Nowak L., Wu D. G., Simon M., Sternweis P. C. Antibodies to the alpha q subfamily of guanine nucleotide-binding regulatory protein alpha subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones. J Biol Chem. 1991 Oct 25;266(30):20519–20524. [PubMed] [Google Scholar]
  10. Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
  11. Hunyady L., Zhang M., Jagadeesh G., Bor M., Balla T., Catt K. J. Dependence of agonist activation on a conserved apolar residue in the third intracellular loop of the AT1 angiotensin receptor. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10040–10045. doi: 10.1073/pnas.93.19.10040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kai H., Fukui T., Lassègue B., Shah A., Minieri C. A., Griendling K. K. Prolonged exposure to agonist results in a reduction in the levels of the Gq/G11 alpha subunits in cultured vascular smooth muscle cells. Mol Pharmacol. 1996 Jan;49(1):96–104. [PubMed] [Google Scholar]
  13. König B., Arendt A., McDowell J. H., Kahlert M., Hargrave P. A., Hofmann K. P. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6878–6882. doi: 10.1073/pnas.86.18.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee C. H., Park D., Wu D., Rhee S. G., Simon M. I. Members of the Gq alpha subunit gene family activate phospholipase C beta isozymes. J Biol Chem. 1992 Aug 15;267(23):16044–16047. [PubMed] [Google Scholar]
  15. Macrez-Leprêtre N., Kalkbrenner F., Morel J. L., Schultz G., Mironneau J. G protein heterotrimer Galpha13beta1gamma3 couples the angiotensin AT1A receptor to increases in cytoplasmic Ca2+ in rat portal vein myocytes. J Biol Chem. 1997 Apr 11;272(15):10095–10102. doi: 10.1074/jbc.272.15.10095. [DOI] [PubMed] [Google Scholar]
  16. McClue S. J., Baron B. M., Harris B. A. Activation of Gi protein by peptide structures of the muscarinic M2 receptor second intracellular loop. Eur J Pharmacol. 1994 Apr 15;267(2):185–193. doi: 10.1016/0922-4106(94)90170-8. [DOI] [PubMed] [Google Scholar]
  17. Murphy T. J., Alexander R. W., Griendling K. K., Runge M. S., Bernstein K. E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. doi: 10.1038/351233a0. [DOI] [PubMed] [Google Scholar]
  18. Münch G., Dees C., Hekman M., Palm D. Multisite contacts involved in coupling of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Structural and functional studies by beta-receptor-site-specific synthetic peptides. Eur J Biochem. 1991 Jun 1;198(2):357–364. doi: 10.1111/j.1432-1033.1991.tb16023.x. [DOI] [PubMed] [Google Scholar]
  19. O'Dowd B. F., Hnatowich M., Regan J. W., Leader W. M., Caron M. G., Lefkowitz R. J. Site-directed mutagenesis of the cytoplasmic domains of the human beta 2-adrenergic receptor. Localization of regions involved in G protein-receptor coupling. J Biol Chem. 1988 Nov 5;263(31):15985–15992. [PubMed] [Google Scholar]
  20. Ohyama K., Yamano Y., Chaki S., Kondo T., Inagami T. Domains for G-protein coupling in angiotensin II receptor type I: studies by site-directed mutagenesis. Biochem Biophys Res Commun. 1992 Dec 15;189(2):677–683. doi: 10.1016/0006-291x(92)92254-u. [DOI] [PubMed] [Google Scholar]
  21. Parker E. M., Kameyama K., Higashijima T., Ross E. M. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J Biol Chem. 1991 Jan 5;266(1):519–527. [PubMed] [Google Scholar]
  22. Probst W. C., Snyder L. A., Schuster D. I., Brosius J., Sealfon S. C. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 1992 Jan-Feb;11(1):1–20. doi: 10.1089/dna.1992.11.1. [DOI] [PubMed] [Google Scholar]
  23. Savarese T. M., Fraser C. M. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J. 1992 Apr 1;283(Pt 1):1–19. doi: 10.1042/bj2830001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schelling J. R., Nkemere N., Konieczkowski M., Martin K. A., Dubyak G. R. Angiotensin II activates the beta 1 isoform of phospholipase C in vascular smooth muscle cells. Am J Physiol. 1997 May;272(5 Pt 1):C1558–C1566. doi: 10.1152/ajpcell.1997.272.5.C1558. [DOI] [PubMed] [Google Scholar]
  25. Shirai H., Takahashi K., Katada T., Inagami T. Mapping of G protein coupling sites of the angiotensin II type 1 receptor. Hypertension. 1995 Apr;25(4 Pt 2):726–730. doi: 10.1161/01.hyp.25.4.726. [DOI] [PubMed] [Google Scholar]
  26. Socorro L., Alexander R. W., Griendling K. K. Cholera toxin modulation of angiotensin II-stimulated inositol phosphate production in cultured vascular smooth muscle cells. Biochem J. 1990 Feb 1;265(3):799–807. doi: 10.1042/bj2650799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strader C. D., Dixon R. A., Cheung A. H., Candelore M. R., Blake A. D., Sigal I. S. Mutations that uncouple the beta-adrenergic receptor from Gs and increase agonist affinity. J Biol Chem. 1987 Dec 5;262(34):16439–16443. [PubMed] [Google Scholar]
  28. Thomas W. G., Thekkumkara T. J., Motel T. J., Baker K. M. Stable expression of a truncated AT1A receptor in CHO-K1 cells. The carboxyl-terminal region directs agonist-induced internalization but not receptor signaling or desensitization. J Biol Chem. 1995 Jan 6;270(1):207–213. doi: 10.1074/jbc.270.1.207. [DOI] [PubMed] [Google Scholar]
  29. Voss T., Wallner E., Czernilofsky A. P., Freissmuth M. Amphipathic alpha-helical structure does not predict the ability of receptor-derived synthetic peptides to interact with guanine nucleotide-binding regulatory proteins. J Biol Chem. 1993 Mar 5;268(7):4637–4642. [PubMed] [Google Scholar]
  30. Wang C. D., Buck M. A., Fraser C. M. Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol. 1991 Aug;40(2):168–179. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES