Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 15;332(Pt 3):789–797. doi: 10.1042/bj3320789

Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility.

Y A Ioannou 1, K M Zeidner 1, M E Grace 1, R J Desnick 1
PMCID: PMC1219542  PMID: 9620884

Abstract

Human alpha-galactosidase A (EC 3.2.1.22; alpha-Gal A) is the homodimeric glycoprotein that hydrolyses the terminal alpha-galactosyl moieties from glycolipids and glycoproteins. The type, site occupancy and function of the N-linked oligosaccharide chains on this lysosomal hydrolase were determined. Endoglycosidase treatment of the purified recombinant enzyme and mutagenesis studies indicated that three (Asn-139, Asn-192 and Asn-215) of the four potential N-glycosylation consensus sequences were occupied by complex, high-mannose and hybrid-type oligosaccharides respectively. When expressed in COS-1 cells, glycoforms with glycosylation site 1 or 2 obliterated had more than 70% of wild-type activity, and both glycoforms were secreted. In contrast, the glycoform with only site 3 eliminated had decreased activity (less than 40%); little, if any, was secreted. Expressed mutant glycoforms in which site 3 and site 1 or 2 were obliterated had little, if any, intracellular or secreted enzymic activity, and immunofluorescence microscopy revealed that the expressed mutant glycoforms were retained in the endoplasmic reticulum, presumably where they were degraded. Thus glycosylation at site 3 was crucial to the formation of soluble, active enzyme, as well as transport to the lysosome. Absence of the site 3 hybrid-type oligosaccharide exposed an adjacent, normally protected, hydrophobic region, resulting in aggregation of the enzyme polypeptide in the endoplasmic reticulum. In support of this concept, endoglycosidase H-treated enzyme or mannose-terminated enzyme expressed in Autographa californica cells also aggregated when concentrated, emphasizing that site 3 occupancy by a hybrid-type oligosaccharide was required for enzyme solubility.

Full Text

The Full Text of this article is available as a PDF (539.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg-Fussman A., Grace M. E., Ioannou Y., Grabowski G. A. Human acid beta-glucosidase. N-glycosylation site occupancy and the effect of glycosylation on enzymatic activity. J Biol Chem. 1993 Jul 15;268(20):14861–14866. [PubMed] [Google Scholar]
  2. Bishop D. F., Calhoun D. H., Bernstein H. S., Hantzopoulos P., Quinn M., Desnick R. J. Human alpha-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4859–4863. doi: 10.1073/pnas.83.13.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop D. F., Desnick R. J. Affinity purification of alpha-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. Properties of the purified splenic enzyme compared to other forms. J Biol Chem. 1981 Feb 10;256(3):1307–1316. [PubMed] [Google Scholar]
  4. Bishop D. F., Wampler D. E., Sgouris J. T., Bonefeld R. J., Anderson D. K., Hawley M. C., Sweeley C. C. Pilot scale purification of alpha-galactosidase A from Cohn fraction IV-1 of human plasma. Biochim Biophys Acta. 1978 May 11;524(1):109–120. doi: 10.1016/0005-2744(78)90109-2. [DOI] [PubMed] [Google Scholar]
  5. Brady R. O., Tallman J. F., Johnson W. G., Gal A. E., Leahy W. R., Quirk J. M., Dekaban A. S. Replacement therapy for inherited enzyme deficiency. Use of purified ceramidetrihexosidase in Fabry's disease. N Engl J Med. 1973 Jul 5;289(1):9–14. doi: 10.1056/NEJM197307052890103. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  7. Davies J. P., Eng C. M., Hill J. A., Malcolm S., MacDermot K., Winchester B., Desnick R. J. Fabry disease: fourteen alpha-galactosidase A mutations in unrelated families from the United Kingdom and other European countries. Eur J Hum Genet. 1996;4(4):219–224. doi: 10.1159/000472202. [DOI] [PubMed] [Google Scholar]
  8. Eng C. M., Desnick R. J. Molecular basis of Fabry disease: mutations and polymorphisms in the human alpha-galactosidase A gene. Hum Mutat. 1994;3(2):103–111. doi: 10.1002/humu.1380030204. [DOI] [PubMed] [Google Scholar]
  9. Eng C. M., Niehaus D. J., Enriquez A. L., Burgert T. S., Ludman M. D., Desnick R. J. Fabry disease: twenty-three mutations including sense and antisense CpG alterations and identification of a deletional hot-spot in the alpha-galactosidase A gene. Hum Mol Genet. 1994 Oct;3(10):1795–1799. doi: 10.1093/hmg/3.10.1795. [DOI] [PubMed] [Google Scholar]
  10. Eng C. M., Resnick-Silverman L. A., Niehaus D. J., Astrin K. H., Desnick R. J. Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet. 1993 Dec;53(6):1186–1197. [PMC free article] [PubMed] [Google Scholar]
  11. Gavel Y., von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990 Apr;3(5):433–442. doi: 10.1093/protein/3.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gieselmann V., Schmidt B., von Figura K. In vitro mutagenesis of potential N-glycosylation sites of arylsulfatase A. Effects on glycosylation, phosphorylation, and intracellular sorting. J Biol Chem. 1992 Jul 5;267(19):13262–13266. [PubMed] [Google Scholar]
  13. Hermans M. M., Wisselaar H. A., Kroos M. A., Oostra B. A., Reuser A. J. Human lysosomal alpha-glucosidase: functional characterization of the glycosylation sites. Biochem J. 1993 Feb 1;289(Pt 3):681–686. doi: 10.1042/bj2890681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  15. Ioannou Y. A., Bishop D. F., Desnick R. J. Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol. 1992 Dec;119(5):1137–1150. doi: 10.1083/jcb.119.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kadowaki H., Kadowaki T., Wondisford F. E., Taylor S. I. Use of polymerase chain reaction catalyzed by Taq DNA polymerase for site-specific mutagenesis. Gene. 1989 Mar 15;76(1):161–166. doi: 10.1016/0378-1119(89)90018-8. [DOI] [PubMed] [Google Scholar]
  17. Kane S. E. Mouse procathepsin L lacking a functional glycosylation site is properly folded, stable, and secreted by NIH 3T3 cells. J Biol Chem. 1993 May 25;268(15):11456–11462. [PubMed] [Google Scholar]
  18. Kornreich R., Desnick R. J., Bishop D. F. Nucleotide sequence of the human alpha-galactosidase A gene. Nucleic Acids Res. 1989 Apr 25;17(8):3301–3302. doi: 10.1093/nar/17.8.3301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lemansky P., Bishop D. F., Desnick R. J., Hasilik A., von Figura K. Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem. 1987 Feb 15;262(5):2062–2065. [PubMed] [Google Scholar]
  21. Murali R., Ioannou Y. A., Desnick R. J., Burnett R. M. Crystallization and preliminary X-ray analysis of human alpha-galactosidase A complex. J Mol Biol. 1994 Jun 17;239(4):578–580. doi: 10.1006/jmbi.1994.1397. [DOI] [PubMed] [Google Scholar]
  22. Tarentino A. L., Trimble R. B., Plummer T. H., Jr Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods Cell Biol. 1989;32:111–139. doi: 10.1016/s0091-679x(08)61169-3. [DOI] [PubMed] [Google Scholar]
  23. Terasaki M., Reese T. S. Characterization of endoplasmic reticulum by co-localization of BiP and dicarbocyanine dyes. J Cell Sci. 1992 Feb;101(Pt 2):315–322. doi: 10.1242/jcs.101.2.315. [DOI] [PubMed] [Google Scholar]
  24. Varki A., Kornfeld S. Structural studies of phosphorylated high mannose-type oligosaccharides. J Biol Chem. 1980 Nov 25;255(22):10847–10858. [PubMed] [Google Scholar]
  25. Varki A., Kornfeld S. The spectrum of anionic oligosaccharides released by endo-beta-N-acetylglucosaminidase H from glycoproteins. Structural studies and interactions with the phosphomannosyl receptor. J Biol Chem. 1983 Mar 10;258(5):2808–2818. [PubMed] [Google Scholar]
  26. Voss T., Ergülen E., Ahorn H., Kubelka V., Sugiyama K., Maurer-Fogy I., Glössl J. Expression of human interferon omega 1 in Sf9 cells. No evidence for complex-type N-linked glycosylation or sialylation. Eur J Biochem. 1993 Nov 1;217(3):913–919. doi: 10.1111/j.1432-1033.1993.tb18321.x. [DOI] [PubMed] [Google Scholar]
  27. Weitz G., Proia R. L. Analysis of the glycosylation and phosphorylation of the alpha-subunit of the lysosomal enzyme, beta-hexosaminidase A, by site-directed mutagenesis. J Biol Chem. 1992 May 15;267(14):10039–10044. [PubMed] [Google Scholar]
  28. Wyss D. F., Wagner G. The structural role of sugars in glycoproteins. Curr Opin Biotechnol. 1996 Aug;7(4):409–416. doi: 10.1016/s0958-1669(96)80116-9. [DOI] [PubMed] [Google Scholar]
  29. von Scheidt W., Eng C. M., Fitzmaurice T. F., Erdmann E., Hübner G., Olsen E. G., Christomanou H., Kandolf R., Bishop D. F., Desnick R. J. An atypical variant of Fabry's disease with manifestations confined to the myocardium. N Engl J Med. 1991 Feb 7;324(6):395–399. doi: 10.1056/NEJM199102073240607. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES