Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 1;333(Pt 1):17–25. doi: 10.1042/bj3330017

Elucidation of a promoter activity that directs the expression of acetyl-CoA carboxylase alpha with an alternative N-terminus in a tissue-restricted fashion.

M C Barber 1, M T Travers 1
PMCID: PMC1219550  PMID: 9639557

Abstract

Previous studies in rats and humans have demonstrated that acetyl-CoA carboxylase alpha (ACC-alpha), the principal ACC isoenzyme in lipogenic tissues, is transcribed from two promoters, PI and PII, that operate in a tissue-specific fashion. Each promoter gives rise to ACC-alpha mRNA isoforms that differ in their 5' untranslated regions but essentially encode the same protein product. In the present study we demonstrate that such a pattern of promoter usage is evident in sheep tissues but in addition we have detected the expression of a novel ACC-alpha mRNA isoform that is expressed in a variety of tissues including kidney, lung, liver and mammary gland, where it is markedly induced during lactation. This novel transcript differs from the previously described ACC-alpha mRNA in that exon 5, the primary coding exon in both PI and PII transcripts, is replaced by a 424-nt sequence that seems to represent the 5' terminus of the mRNA. The 424-nt sequence encodes a 17-residue N-terminal region as the N-terminal residue in the deduced sequence is a methionine flanked by several in-frame stop codons. The 5' terminal 424 nt are present as a single exon, which we have termed exon 5A, in the sheep ACC-alpha gene and this is located approx. 15 kb downstream of exon 5 and 5 kb upstream of exon 6. A 1.5 kb HindIII-BglII fragment encompassing the 5' terminus and sequence immediately upstream of exon 5A demonstrates promoter activity when transiently transfected into HepG2 cells and HC11 mouse mammary cells and this is markedly enhanced when insulin is present in the culture medium. Promoter activity is also evident in primary sheep mammary epithelial cells. These results demonstrate the presence of a third promoter, PIII, in the ACC-alpha gene that results in the tissue-restricted expression of an ACC isoenzyme.

Full Text

The Full Text of this article is available as a PDF (470.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Elheiga L., Almarza-Ortega D. B., Baldini A., Wakil S. J. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997 Apr 18;272(16):10669–10677. doi: 10.1074/jbc.272.16.10669. [DOI] [PubMed] [Google Scholar]
  2. Abu-Elheiga L., Jayakumar A., Baldini A., Chirala S. S., Wakil S. J. Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4011–4015. doi: 10.1073/pnas.92.9.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ailhaud G., Amri E. Z., Grimaldi P. A. Fatty acids and adipose cell differentiation. Prostaglandins Leukot Essent Fatty Acids. 1995 Feb-Mar;52(2-3):113–115. doi: 10.1016/0952-3278(95)90008-x. [DOI] [PubMed] [Google Scholar]
  4. Ball R. K., Friis R. R., Schoenenberger C. A., Doppler W., Groner B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 1988 Jul;7(7):2089–2095. doi: 10.1002/j.1460-2075.1988.tb03048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barber M. C., Travers M. T. Cloning and characterisation of multiple acetyl-CoA carboxylase transcripts in ovine adipose tissue. Gene. 1995 Mar 10;154(2):271–275. doi: 10.1016/0378-1119(94)00871-o. [DOI] [PubMed] [Google Scholar]
  6. Bianchi A., Evans J. L., Iverson A. J., Nordlund A. C., Watts T. D., Witters L. A. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502–1509. [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  10. Frischauf A. M. Digestion of DNA: size fractionation. Methods Enzymol. 1987;152:183–189. doi: 10.1016/0076-6879(87)52019-5. [DOI] [PubMed] [Google Scholar]
  11. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ha J., Daniel S., Broyles S. S., Kim K. H. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem. 1994 Sep 2;269(35):22162–22168. [PubMed] [Google Scholar]
  13. Ha J., Daniel S., Kong I. S., Park C. K., Tae H. J., Kim K. H. Cloning of human acetyl-CoA carboxylase cDNA. Eur J Biochem. 1994 Jan 15;219(1-2):297–306. doi: 10.1111/j.1432-1033.1994.tb19941.x. [DOI] [PubMed] [Google Scholar]
  14. Ha J., Lee J. K., Kim K. S., Witters L. A., Kim K. H. Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11466–11470. doi: 10.1073/pnas.93.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
  16. Haystead T. A., Campbell D. G., Hardie D. G. Analysis of sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes. Comparison with sites phosphorylated by casein kinase-2 and the calmodulin-dependent multiprotein kinase. Eur J Biochem. 1988 Aug 1;175(2):347–354. doi: 10.1111/j.1432-1033.1988.tb14203.x. [DOI] [PubMed] [Google Scholar]
  17. Haystead T. A., Hardie D. G. Insulin and phorbol ester stimulate phosphorylation of acetyl-CoA carboxylase at similar sites in isolated adipocytes. Lack of correspondence with sites phosphorylated on the purified enzyme by protein kinase C. Eur J Biochem. 1988 Aug 1;175(2):339–345. doi: 10.1111/j.1432-1033.1988.tb14202.x. [DOI] [PubMed] [Google Scholar]
  18. Herrmann B. G., Frischauf A. M. Isolation of genomic DNA. Methods Enzymol. 1987;152:180–183. doi: 10.1016/0076-6879(87)52018-3. [DOI] [PubMed] [Google Scholar]
  19. Kim K. H., López-Casillas F., Bai D. H., Luo X., Pape M. E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 1989 Sep;3(11):2250–2256. doi: 10.1096/fasebj.3.11.2570725. [DOI] [PubMed] [Google Scholar]
  20. Kim K. H., Tae H. J. Pattern and regulation of acetyl-CoA carboxylase gene expression. J Nutr. 1994 Aug;124(8 Suppl):1273S–1283S. doi: 10.1093/jn/124.suppl_8.1273S. [DOI] [PubMed] [Google Scholar]
  21. Kim T. S., Leahy P., Freake H. C. Promoter usage determines tissue specific responsiveness of the rat acetyl-CoA carboxylase gene. Biochem Biophys Res Commun. 1996 Aug 14;225(2):647–653. doi: 10.1006/bbrc.1996.1224. [DOI] [PubMed] [Google Scholar]
  22. Kimmel A. R., Berger S. L. Preparation of cDNA and the generation of cDNA libraries: overview. Methods Enzymol. 1987;152:307–316. doi: 10.1016/0076-6879(87)52035-3. [DOI] [PubMed] [Google Scholar]
  23. Kong I. S., López-Casillas F., Kim K. H. Acetyl-CoA carboxylase mRNA species with or without inhibitory coding sequence for Ser-1200 phosphorylation. J Biol Chem. 1990 Aug 15;265(23):13695–13701. [PubMed] [Google Scholar]
  24. Kovalic D., Kwak J. H., Weisblum B. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acids Res. 1991 Aug 25;19(16):4560–4560. doi: 10.1093/nar/19.16.4560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  26. Krieg P. A., Melton D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987;155:397–415. doi: 10.1016/0076-6879(87)55027-3. [DOI] [PubMed] [Google Scholar]
  27. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  28. Louveau I., Chaudhuri S., Etherton T. D. An improved method for isolating RNA from porcine adipose tissue. Anal Biochem. 1991 Aug 1;196(2):308–310. doi: 10.1016/0003-2697(91)90471-5. [DOI] [PubMed] [Google Scholar]
  29. Luo X. C., Park K., Lopez-Casillas F., Kim K. H. Structural features of the acetyl-CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4042–4046. doi: 10.1073/pnas.86.11.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. López-Casillas F., Ponce-Castañeda M. V., Kim K. H. In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology. 1991 Aug;129(2):1049–1058. doi: 10.1210/endo-129-2-1049. [DOI] [PubMed] [Google Scholar]
  32. McGarry J. D., Woeltje K. F., Kuwajima M., Foster D. W. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271–284. doi: 10.1002/dmr.5610050305. [DOI] [PubMed] [Google Scholar]
  33. Michell B. J., Stapleton D., Mitchelhill K. I., House C. M., Katsis F., Witters L. A., Kemp B. E. Isoform-specific purification and substrate specificity of the 5'-AMP-activated protein kinase. J Biol Chem. 1996 Nov 8;271(45):28445–28450. doi: 10.1074/jbc.271.45.28445. [DOI] [PubMed] [Google Scholar]
  34. Munday M. R., Campbell D. G., Carling D., Hardie D. G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem. 1988 Aug 1;175(2):331–338. doi: 10.1111/j.1432-1033.1988.tb14201.x. [DOI] [PubMed] [Google Scholar]
  35. Ponce-Castañeda M. V., López-Casillas F., Kim K. H. Acetyl-coenzyme A carboxylase messenger ribonucleic acid metabolism in liver, adipose tissues, and mammary glands during pregnancy and lactation. J Dairy Sci. 1991 Nov;74(11):4013–4021. doi: 10.3168/jds.S0022-0302(91)78596-2. [DOI] [PubMed] [Google Scholar]
  36. Rodriguez I. R., Chader G. J. A novel method for the isolation of tissue-specific genes. Nucleic Acids Res. 1992 Jul 11;20(13):3528–3528. doi: 10.1093/nar/20.13.3528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smale S. T. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):73–88. doi: 10.1016/s0167-4781(96)00206-0. [DOI] [PubMed] [Google Scholar]
  39. Vernon R. G., Finley E. Roles of insulin and growth hormone in the adaptations of fatty acid synthesis in white adipose tissue during the lactation cycle in sheep. Biochem J. 1988 Dec 15;256(3):873–878. doi: 10.1042/bj2560873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Watkins P. A., Tarlow D. M., Lane M. D. Mechanism for acute control of fatty acid synthesis by glucagon and 3':5'-cyclic AMP in the liver cell. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1497–1501. doi: 10.1073/pnas.74.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Widmer J., Fassihi K. S., Schlichter S. C., Wheeler K. S., Crute B. E., King N., Nutile-McMenemy N., Noll W. W., Daniel S., Ha J. Identification of a second human acetyl-CoA carboxylase gene. Biochem J. 1996 Jun 15;316(Pt 3):915–922. doi: 10.1042/bj3160915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilde C. J., Addey C. V., Boddy L. M., Peaker M. Autocrine regulation of milk secretion by a protein in milk. Biochem J. 1995 Jan 1;305(Pt 1):51–58. doi: 10.1042/bj3050051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zammit V. A. Role of insulin in hepatic fatty acid partitioning: emerging concepts. Biochem J. 1996 Feb 15;314(Pt 1):1–14. doi: 10.1042/bj3140001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhang S., Kim K. H. Acetyl-CoA carboxylase is essential for nutrient-induced insulin secretion. Biochem Biophys Res Commun. 1996 Dec 24;229(3):701–705. doi: 10.1006/bbrc.1996.1868. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES