Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 1;333(Pt 1):107–115. doi: 10.1042/bj3330107

L-Mandelate dehydrogenase from Rhodotorula graminis: cloning, sequencing and kinetic characterization of the recombinant enzyme and its independently expressed flavin domain.

R M Illias 1, R Sinclair 1, D Robertson 1, A Neu 1, S K Chapman 1, G A Reid 1
PMCID: PMC1219562  PMID: 9639569

Abstract

The l-mandelate dehydrogenase (L-MDH) from the yeast Rhodotorula graminis is a mitochondrial flavocytochrome b2 which catalyses the oxidation of mandelate to phenylglyoxylate coupled with the reduction of cytochrome c. We have used the N-terminal sequence of the enzyme to isolate the gene encoding this enzyme using the PCR. Comparison of the genomic sequence with the sequence of cDNA prepared by reverse transcription PCR revealed the presence of 11 introns in the coding region. The predicted amino acid sequence indicates a close relationship with the flavocytochromes b2 from Saccharomyces cerevisiae and Hansenula anomala, with about 40% identity to each. The sequence shows that a key residue for substrate specificity in S. cerevisiae flavocytochrome b2, Leu-230, is replaced by Gly in L-MDH. This substitution is likely to play an important part in determining the different substrate specificities of the two enzymes. We have developed an expression system and purification protocol for recombinant L-MDH. In addition, we have expressed and purified the flavin-containing domain of L-MDH independently of its cytochrome domain. Detailed steady-state and pre-steady-state kinetic investigations of both L-MDH and its independently expressed flavin domain have been carried out. These indicate that L-MDH is efficient with both physiological (cytochrome c, kcat=225 s-1 at 25 degrees C) and artificial (ferricyanide, kcat=550 s-1 at 25 degrees C) electron acceptors. Kinetic isotope effects with [2-2H]mandelate indicate that H-C-2 bond cleavage contributes somewhat to rate-limitation. However, the value of the isotope effect erodes significantly as the catalytic cycle proceeds. Reduction potentials at 25 degrees C were measured as -120 mV for the 2-electron reduction of the flavin and -10 mV for the 1-electron reduction of the haem. The general trends seen in the kinetic studies show marked similarities to those observed previously with the flavocytochrome b2 (L-lactate dehydrogenase) from S. cerevisiae.

Full Text

The Full Text of this article is available as a PDF (580.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEBY C. A., MORTON R. K. Crystalline cytochrome b2 and lactic dehydrogenase of yeast. Nature. 1954 Apr 24;173(4408):749–752. doi: 10.1038/173749a0. [DOI] [PubMed] [Google Scholar]
  2. Anson J. G., Gilbert H. J., Oram J. D., Minton N. P. Complete nucleotide sequence of the Rhodosporidium toruloides gene coding for phenylalanine ammonia-lyase. Gene. 1987;58(2-3):189–199. doi: 10.1016/0378-1119(87)90375-1. [DOI] [PubMed] [Google Scholar]
  3. Balme A., Brunt C. E., Pallister R. L., Chapman S. K., Reid G. A. Isolation and characterization of the flavin-binding domain of flavocytochrome b2 expressed independently in Escherichia coli. Biochem J. 1995 Jul 15;309(Pt 2):601–605. doi: 10.1042/bj3090601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belmouden A., Lê K. H., Lederer F., Garchon H. J. Molecular cloning and nucleotide sequence of cDNA encoding rat kidney long-chain L-2-hydroxy acid oxidase. Expression of the catalytically active recombinant protein as a chimaera. Eur J Biochem. 1993 May 15;214(1):17–25. doi: 10.1111/j.1432-1033.1993.tb17891.x. [DOI] [PubMed] [Google Scholar]
  5. Black M. T., Gunn F. J., Chapman S. K., Reid G. A. Structural basis for the kinetic differences between flavocytochromes b2 from the yeasts Hansenula anomala and Saccharomyces cerevisiae. Biochem J. 1989 Nov 1;263(3):973–976. doi: 10.1042/bj2630973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Black M. T., White S. A., Reid G. A., Chapman S. K. High-level expression of fully active yeast flavocytochrome b2 in Escherichia coli. Biochem J. 1989 Feb 15;258(1):255–259. doi: 10.1042/bj2580255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crowl R., Seamans C., Lomedico P., McAndrew S. Versatile expression vectors for high-level synthesis of cloned gene products in Escherichia coli. Gene. 1985;38(1-3):31–38. doi: 10.1016/0378-1119(85)90200-8. [DOI] [PubMed] [Google Scholar]
  8. Daff S., Ingledew W. J., Reid G. A., Chapman S. K. New insights into the catalytic cycle of flavocytochrome b2. Biochemistry. 1996 May 21;35(20):6345–6350. doi: 10.1021/bi9522559. [DOI] [PubMed] [Google Scholar]
  9. Daff S., Manson F. D., Reid G. A., Chapman S. K. Strategic manipulation of the substrate specificity of Saccharomyces cerevisiae flavocytochrome b2. Biochem J. 1994 Aug 1;301(Pt 3):829–834. doi: 10.1042/bj3010829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daum G., Böhni P. C., Schatz G. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem. 1982 Nov 10;257(21):13028–13033. [PubMed] [Google Scholar]
  11. Durham D. R. Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis. J Bacteriol. 1984 Nov;160(2):778–780. doi: 10.1128/jb.160.2.778-780.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  13. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  14. Gasser S. M., Ohashi A., Daum G., Böhni P. C., Gibson J., Reid G. A., Yonetani T., Schatz G. Imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proc Natl Acad Sci U S A. 1982 Jan;79(2):267–271. doi: 10.1073/pnas.79.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Giegel D. A., Williams C. H., Jr, Massey V. L-lactate 2-monooxygenase from Mycobacterium smegmatis. Cloning, nucleotide sequence, and primary structure homology within an enzyme family. J Biol Chem. 1990 Apr 25;265(12):6626–6632. [PubMed] [Google Scholar]
  16. Guiard B. Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b2). EMBO J. 1985 Dec 1;4(12):3265–3272. doi: 10.1002/j.1460-2075.1985.tb04076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haid A., Suissa M. Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:192–205. doi: 10.1016/s0076-6879(83)96017-2. [DOI] [PubMed] [Google Scholar]
  18. Lindqvist Y., Brändén C. I., Mathews F. S., Lederer F. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J Biol Chem. 1991 Feb 15;266(5):3198–3207. [PubMed] [Google Scholar]
  19. Miles C. S., Rouvière-Fourmy N., Lederer F., Mathews F. S., Reid G. A., Black M. T., Chapman S. K. Tyr-143 facilitates interdomain electron transfer in flavocytochrome b2. Biochem J. 1992 Jul 1;285(Pt 1):187–192. doi: 10.1042/bj2850187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pajot P., Claisse M. L. Utilization by yeast of D-lactate and L-lactate as sources of energy in the presence of antimycin A. Eur J Biochem. 1974 Nov 1;49(1):275–285. doi: 10.1111/j.1432-1033.1974.tb03832.x. [DOI] [PubMed] [Google Scholar]
  21. Reid G. A., Yonetani T., Schatz G. Import of proteins into mitochondria. Import and maturation of the mitochondrial intermembrane space enzymes cytochrome b2 and cytochrome c peroxidase in intact yeast cells. J Biol Chem. 1982 Nov 10;257(21):13068–13074. [PubMed] [Google Scholar]
  22. Rokeach L. A., Haselby J. A., Hoch S. O. Molecular cloning of a cDNA encoding the human Sm-D autoantigen. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4832–4836. doi: 10.1073/pnas.85.13.4832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ruby S. W., Abelson J. Pre-mRNA splicing in yeast. Trends Genet. 1991 Mar;7(3):79–85. doi: 10.1016/0168-9525(91)90276-V. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sharp R. E., Chapman S. K., Reid G. A. Deletions in the interdomain hinge region of flavocytochrome b2: effects on intraprotein electron transfer. Biochemistry. 1996 Jan 23;35(3):891–899. doi: 10.1021/bi950457z. [DOI] [PubMed] [Google Scholar]
  26. Sinclair R., Reid G. A., Chapman S. K. Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity. Biochem J. 1998 Jul 1;333(Pt 1):117–120. doi: 10.1042/bj3330117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smékal O., Reid G. A., Chapman S. K. Substrate analogues as probes of the catalytic mechanism of L-mandelate dehydrogenase from Rhodotorula graminis. Biochem J. 1994 Feb 1;297(Pt 3):647–652. doi: 10.1042/bj2970647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smékal O., Yasin M., Fewson C. A., Reid G. A., Chapman S. K. L-mandelate dehydrogenase from Rhodotorula graminis: comparisons with the L-lactate dehydrogenase (flavocytochrome b2) from Saccharomyces cerevisiae. Biochem J. 1993 Feb 15;290(Pt 1):103–107. doi: 10.1042/bj2900103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takahashi Y., Tani T., Ohshima Y. Spliceosomal introns in conserved sequences of U1 and U5 small nuclear RNA genes in yeast Rhodotorula hasegawae. J Biochem. 1996 Sep;120(3):677–683. doi: 10.1093/oxfordjournals.jbchem.a021465. [DOI] [PubMed] [Google Scholar]
  30. Tsou A. Y., Ransom S. C., Gerlt J. A., Buechter D. D., Babbitt P. C., Kenyon G. L. Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli. Biochemistry. 1990 Oct 23;29(42):9856–9862. doi: 10.1021/bi00494a015. [DOI] [PubMed] [Google Scholar]
  31. Vaslet C. A., Strausberg R. L., Sykes A., Levy A., Filpula D. cDNA and genomic cloning of yeast phenylalanine ammonia-lyase genes reveal genomic intron deletions. Nucleic Acids Res. 1988 Dec 9;16(23):11382–11382. doi: 10.1093/nar/16.23.11382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  33. Volokita M., Somerville C. R. The primary structure of spinach glycolate oxidase deduced from the DNA sequence of a cDNA clone. J Biol Chem. 1987 Nov 25;262(33):15825–15828. [PubMed] [Google Scholar]
  34. White S. A., Black M. T., Reid G. A., Chapman S. K. The role of the C-terminal tail of flavocytochrome b2. Biochem J. 1989 Nov 1;263(3):849–853. doi: 10.1042/bj2630849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]
  36. Yasin M., Fewson C. A. L(+)-Mandelate dehydrogenase from Rhodotorula graminis: purification, partial characterization and identification as a flavocytochrome b. Biochem J. 1993 Jul 15;293(Pt 2):455–460. doi: 10.1042/bj2930455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES