Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 1;333(Pt 1):139–149. doi: 10.1042/bj3330139

cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model.

R Hoffmann 1, I R Wilkinson 1, J F McCallum 1, P Engels 1, M D Houslay 1
PMCID: PMC1219566  PMID: 9639573

Abstract

Ser-13 and Ser-54 were shown to provide the sole sites for the protein kinase A (PKA)-mediated phosphorylation of the human cAMP-specific phosphodiesterase isoform HSPDE4D3. The ability of PKA to phosphorylate and activate HSPDE4D3 was mimicked by replacing Ser-54 with either of the negatively charged amino acids, aspartate or glutamate, within the consensus motif of RRES54. The PDE4 selective inhibitor rolipram ¿4-[3-(cyclopentoxy)-4-methoxyphenyl]-2-pyrrolidone¿ inhibited both PKA-phosphorylated HSPDE4D3 and the Ser-54-->Asp mutant, with an IC50 value that was approximately 8-fold lower than that seen for the non-PKA-phosphorylated enzyme. Lower IC50 values for inhibition by rolipram were seen for a wide range of non-activated residue 54 mutants, except for those which had side-chains able to serve as hydrogen-bond donors, namely the Ser-54-->Thr, Ser-54-->Tyr and Ser-54-->Cys mutants. The Glu-53-->Ala mutant exhibited an activity comparable with that of the PKA phosphorylated native enzyme and the Ser-54-->Asp mutant but, in contrast to the native enzyme, was insensitive to activation by PKA, despite being more rapidly phosphorylated by this protein kinase. The activated Glu-53-->Ala mutant exhibited a sensitivity to inhibition by rolipram which was unchanged from that of the native enzyme. The double mutant, Arg-51-->Ala/Arg-52-->Ala, showed no change in either enzyme activity or rolipram inhibition from the native enzyme and was incapable of providing a substrate for PKA phosphorylation at Ser-54. No difference in inhibition by dipyridamole was seen for the native enzyme and the Ser-54-->Asp and Ser-54-->Ala mutants. A model is proposed which envisages that phosphorylation by PKA triggers at least two distinct conformational changes in HSPDE4D3; one of these gives rise to enzyme activation and another enhances sensitivity to inhibition by rolipram. Activation of HSPDE4D3 by PKA-mediated phosphorylation is suggested to involve disruption of an ion-pair interaction involving the negatively charged Glu-53. The increase in susceptibility to inhibition by rolipram upon PKA-mediated phosphorylation is suggested to involve the disruption of a hydrogen-bond involving the side-chain hydroxy group of Ser-54.

Full Text

The Full Text of this article is available as a PDF (472.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez R., Sette C., Yang D., Eglen R. M., Wilhelm R., Shelton E. R., Conti M. Activation and selective inhibition of a cyclic AMP-specific phosphodiesterase, PDE-4D3. Mol Pharmacol. 1995 Oct;48(4):616–622. [PubMed] [Google Scholar]
  2. Banner K. H., Page C. P. Theophylline and selective phosphodiesterase inhibitors as anti-inflammatory drugs in the treatment of bronchial asthma. Eur Respir J. 1995 Jun;8(6):996–1000. [PubMed] [Google Scholar]
  3. Beavo J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995 Oct;75(4):725–748. doi: 10.1152/physrev.1995.75.4.725. [DOI] [PubMed] [Google Scholar]
  4. Bolger G. B., Erdogan S., Jones R. E., Loughney K., Scotland G., Hoffmann R., Wilkinson I., Farrell C., Houslay M. D. Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J. 1997 Dec 1;328(Pt 2):539–548. doi: 10.1042/bj3280539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolger G. B., McPhee I., Houslay M. D. Alternative splicing of cAMP-specific phosphodiesterase mRNA transcripts. Characterization of a novel tissue-specific isoform, RNPDE4A8. J Biol Chem. 1996 Jan 12;271(2):1065–1071. doi: 10.1074/jbc.271.2.1065. [DOI] [PubMed] [Google Scholar]
  6. Bolger G. B. Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell Signal. 1994 Nov;6(8):851–859. doi: 10.1016/0898-6568(94)90018-3. [DOI] [PubMed] [Google Scholar]
  7. Bolger G. B., Rodgers L., Riggs M. Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterases. Gene. 1994 Nov 18;149(2):237–244. doi: 10.1016/0378-1119(94)90155-4. [DOI] [PubMed] [Google Scholar]
  8. Bolger G., Michaeli T., Martins T., St John T., Steiner B., Rodgers L., Riggs M., Wigler M., Ferguson K. A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 1993 Oct;13(10):6558–6571. doi: 10.1128/mcb.13.10.6558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  10. Conti M., Iona S., Cuomo M., Swinnen J. V., Odeh J., Svoboda M. E. Characterization of a hormone-inducible, high affinity adenosine 3'-5'-cyclic monophosphate phosphodiesterase from the rat Sertoli cell. Biochemistry. 1995 Jun 27;34(25):7979–7987. doi: 10.1021/bi00025a003. [DOI] [PubMed] [Google Scholar]
  11. Conti M., Nemoz G., Sette C., Vicini E. Recent progress in understanding the hormonal regulation of phosphodiesterases. Endocr Rev. 1995 Jun;16(3):370–389. doi: 10.1210/edrv-16-3-370. [DOI] [PubMed] [Google Scholar]
  12. Conti M., Swinnen J. V., Tsikalas K. E., Jin S. L. Structure and regulation of the rat high-affinity cyclic AMP phosphodiesterases. A family of closely related enzymes. Adv Second Messenger Phosphoprotein Res. 1992;25:87–99. [PubMed] [Google Scholar]
  13. Dent G., Giembycz M. A. Phosphodiesterase inhibitors: Lily the Pink's medicinal compound for asthma? Thorax. 1996 Jun;51(6):647–649. doi: 10.1136/thx.51.6.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houslay M. D., Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997 Jun;22(6):217–224. doi: 10.1016/s0968-0004(97)01050-5. [DOI] [PubMed] [Google Scholar]
  15. Houslay M. D., Scotland G., Erdogan S., Huston E., Mackenzie S., McCallum J. F., McPhee I., Pooley L., Rena G., Ross A. Intracellular targeting, interaction with Src homology 3 (SH3) domains and rolipram-detected conformational switches in cAMP-specific PDE4A phosphodiesterase. Biochem Soc Trans. 1997 May;25(2):374–381. doi: 10.1042/bst0250374. [DOI] [PubMed] [Google Scholar]
  16. Houslay M. D., Sullivan M., Bolger G. B. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv Pharmacol. 1998;44:225–342. doi: 10.1016/s1054-3589(08)60128-3. [DOI] [PubMed] [Google Scholar]
  17. Houslay M. D. The N-terminal alternately spliced regions of PDE4A cAMP-specific phosphodiesterases determine intracellular targeting and regulation of catalytic activity. Biochem Soc Trans. 1996 Nov;24(4):980–986. doi: 10.1042/bst0240980. [DOI] [PubMed] [Google Scholar]
  18. Huston E., Lumb S., Russell A., Catterall C., Ross A. H., Steele M. R., Bolger G. B., Perry M. J., Owens R. J., Houslay M. D. Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem J. 1997 Dec 1;328(Pt 2):549–558. doi: 10.1042/bj3280549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huston E., Pooley L., Julien P., Scotland G., McPhee I., Sullivan M., Bolger G., Houslay M. D. The human cyclic AMP-specific phosphodiesterase PDE-46 (HSPDE4A4B) expressed in transfected COS7 cells occurs as both particulate and cytosolic species that exhibit distinct kinetics of inhibition by the antidepressant rolipram. J Biol Chem. 1996 Dec 6;271(49):31334–31344. doi: 10.1074/jbc.271.49.31334. [DOI] [PubMed] [Google Scholar]
  20. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  21. Kreis T. E., Lodish H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986 Sep 12;46(6):929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lobban M., Shakur Y., Beattie J., Houslay M. D. Identification of two splice variant forms of type-IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brain: selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem J. 1994 Dec 1;304(Pt 2):399–406. doi: 10.1042/bj3040399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lowe M. E. Site-specific mutations in the COOH-terminus of placental alkaline phosphatase: a single amino acid change converts a phosphatidylinositol-glycan-anchored protein to a secreted protein. J Cell Biol. 1992 Feb;116(3):799–807. doi: 10.1083/jcb.116.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manganiello V. C., Murata T., Taira M., Belfrage P., Degerman E. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch Biochem Biophys. 1995 Sep 10;322(1):1–13. doi: 10.1006/abbi.1995.1429. [DOI] [PubMed] [Google Scholar]
  26. Marchmont R. J., Ayad S. R., Houslay M. D. Purification and properties of the insulin-stimulated cyclic AMP phosphodiesterase from rat liver plasma membranes. Biochem J. 1981 Jun 1;195(3):645–652. doi: 10.1042/bj1950645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McPhee I., Pooley L., Lobban M., Bolger G., Houslay M. D. Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family. Biochem J. 1995 Sep 15;310(Pt 3):965–974. doi: 10.1042/bj3100965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Owens R. J., Lumb S., Rees-Milton K., Russell A., Baldock D., Lang V., Crabbe T., Ballesteros M., Perry M. J. Molecular cloning and expression of a human phosphodiesterase 4C. Cell Signal. 1997 Dec;9(8):575–585. doi: 10.1016/s0898-6568(97)00072-7. [DOI] [PubMed] [Google Scholar]
  30. Pillai R., Kytle K., Reyes A., Colicelli J. Use of a yeast expression system for the isolation and analysis of drug-resistant mutants of a mammalian phosphodiesterase. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11970–11974. doi: 10.1073/pnas.90.24.11970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sette C., Conti M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem. 1996 Jul 12;271(28):16526–16534. doi: 10.1074/jbc.271.28.16526. [DOI] [PubMed] [Google Scholar]
  32. Sette C., Iona S., Conti M. The short-term activation of a rolipram-sensitive, cAMP-specific phosphodiesterase by thyroid-stimulating hormone in thyroid FRTL-5 cells is mediated by a cAMP-dependent phosphorylation. J Biol Chem. 1994 Mar 25;269(12):9245–9252. [PubMed] [Google Scholar]
  33. Sette C., Vicini E., Conti M. Modulation of cellular responses by hormones: role of cAMP specific, rolipram-sensitive phosphodiesterases. Mol Cell Endocrinol. 1994 Apr;100(1-2):75–79. doi: 10.1016/0303-7207(94)90282-8. [DOI] [PubMed] [Google Scholar]
  34. Sette C., Vicini E., Conti M. The ratPDE3/IVd phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase. J Biol Chem. 1994 Jul 15;269(28):18271–18274. [PubMed] [Google Scholar]
  35. Shakur Y., Pryde J. G., Houslay M. D. Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering its sensitivity to inhibition by rolipram. Biochem J. 1993 Jun 15;292(Pt 3):677–686. doi: 10.1042/bj2920677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shakur Y., Wilson M., Pooley L., Lobban M., Griffiths S. L., Campbell A. M., Beattie J., Daly C., Houslay M. D. Identification and characterization of the type-IVA cyclic AMP-specific phosphodiesterase RD1 as a membrane-bound protein expressed in cerebellum. Biochem J. 1995 Mar 15;306(Pt 3):801–809. doi: 10.1042/bj3060801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Soldati T., Perriard J. C. Intracompartmental sorting of essential myosin light chains: molecular dissection and in vivo monitoring by epitope tagging. Cell. 1991 Jul 26;66(2):277–289. doi: 10.1016/0092-8674(91)90618-9. [DOI] [PubMed] [Google Scholar]
  38. Souness J. E., Maslen C., Scott L. C. Effects of solubilization and vanadate/glutathione complex on inhibitor potencies against eosinophil cyclic AMP-specific phosphodiesterase. FEBS Lett. 1992 May 11;302(2):181–184. doi: 10.1016/0014-5793(92)80435-j. [DOI] [PubMed] [Google Scholar]
  39. Souness J. E., Rao S. Proposal for pharmacologically distinct conformers of PDE4 cyclic AMP phosphodiesterases. Cell Signal. 1997 May-Jun;9(3-4):227–236. doi: 10.1016/s0898-6568(96)00173-8. [DOI] [PubMed] [Google Scholar]
  40. Souness J. E., Scott L. C. Stereospecificity of rolipram actions on eosinophil cyclic AMP-specific phosphodiesterase. Biochem J. 1993 Apr 15;291(Pt 2):389–395. doi: 10.1042/bj2910389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tang W. J., Gilman A. G. Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. Science. 1995 Jun 23;268(5218):1769–1772. doi: 10.1126/science.7792604. [DOI] [PubMed] [Google Scholar]
  42. Teixeira M. M., Gristwood R. W., Cooper N., Hellewell P. G. Phosphodiesterase (PDE)4 inhibitors: anti-inflammatory drugs of the future? Trends Pharmacol Sci. 1997 May;18(5):164–171. doi: 10.1016/s0165-6147(97)01049-3. [DOI] [PubMed] [Google Scholar]
  43. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  44. Thompson W. J. Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function. Pharmacol Ther. 1991;51(1):13–33. doi: 10.1016/0163-7258(91)90039-o. [DOI] [PubMed] [Google Scholar]
  45. Torphy T. J., Barnette M. S., Hay D. W., Underwood D. C. Phosphodiesterase IV inhibitors as therapy for eosinophil-induced lung injury in asthma. Environ Health Perspect. 1994 Dec;102 (Suppl 10):79–84. doi: 10.1289/ehp.94102s1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Torphy T. J., DeWolf W. E., Jr, Green D. W., Livi G. P. Biochemical characteristics and cellular regulation of phosphodiesterase IV. Agents Actions Suppl. 1993;43:51–71. doi: 10.1007/978-3-0348-7324-6_5. [DOI] [PubMed] [Google Scholar]
  47. Torphy T. J., Stadel J. M., Burman M., Cieslinski L. B., McLaughlin M. M., White J. R., Livi G. P. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J Biol Chem. 1992 Jan 25;267(3):1798–1804. [PubMed] [Google Scholar]
  48. Torphy T. J., Undem B. J., Cieslinski L. B., Luttmann M. A., Reeves M. L., Hay D. W. Identification, characterization and functional role of phosphodiesterase isozymes in human airway smooth muscle. J Pharmacol Exp Ther. 1993 Jun;265(3):1213–1223. [PubMed] [Google Scholar]
  49. Wachtel H. Potential antidepressant activity of rolipram and other selective cyclic adenosine 3',5'-monophosphate phosphodiesterase inhibitors. Neuropharmacology. 1983 Mar;22(3):267–272. doi: 10.1016/0028-3908(83)90239-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES