Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 1;333(Pt 1):167–174. doi: 10.1042/bj3330167

Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.

S Bröer 1, H P Schneider 1, A Bröer 1, B Rahman 1, B Hamprecht 1, J W Deitmer 1
PMCID: PMC1219569  PMID: 9639576

Abstract

Several laboratories have investigated monocarboxylate transport in a variety of cell types. The characterization of the cloned transporter isoforms in a suitable expression system is nevertheless still lacking. H+/monocarboxylate co-transport was therefore investigated in monocarboxylate transporter 1 (MCT1)-expressing Xenopus laevis oocytes by using pH-sensitive microelectrodes and [14C]lactate. Superfusion with lactate resulted in intracellular acidification of MCT1-expressing oocytes, but not in non-injected control oocytes. The basic kinetic properties of lactate transport in MCT1-expressing oocytes were determined by analysing the rates of intracellular pH changes under different conditions. The results were in agreement with the known properties of the transporter, with respect to both the dependence on the lactate concentration and the external pH value. Besides lactate, MCT1 mediated the reversible transport of a wide variety of monocarboxylic acids including pyruvate, D,L-3-hydroxybutyrate, acetoacetate, alpha-oxoisohexanoate and alpha-oxoisovalerate, but not of dicarboxylic and tricarboxylic acids. The inhibitor alpha-cyano-4-hydroxycinnamate bound strongly to the transporter without being translocated, but could be displaced by the addition of lactate. In addition to changes in the intracellular pH, lactate transport also induced deviations from the resting membrane potential.

Full Text

The Full Text of this article is available as a PDF (613.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bröer S., Bröer A., Hamprecht B. Expression of Na+-independent isoleucine transport activity from rat brain in Xenopus laevis oocytes. Biochim Biophys Acta. 1994 Jun 1;1192(1):95–100. doi: 10.1016/0005-2736(94)90147-3. [DOI] [PubMed] [Google Scholar]
  2. Bröer S., Rahman B., Pellegri G., Pellerin L., Martin J. L., Verleysdonk S., Hamprecht B., Magistretti P. J. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem. 1997 Nov 28;272(48):30096–30102. doi: 10.1074/jbc.272.48.30096. [DOI] [PubMed] [Google Scholar]
  3. Carpenter L., Halestrap A. P. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J. 1994 Dec 15;304(Pt 3):751–760. doi: 10.1042/bj3040751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Bruijne A. W., Vreeburg H., Van Steveninck J. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. Biochim Biophys Acta. 1983 Aug 10;732(3):562–568. doi: 10.1016/0005-2736(83)90232-8. [DOI] [PubMed] [Google Scholar]
  5. Deitmer J. W. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system. J Gen Physiol. 1991 Sep;98(3):637–655. doi: 10.1085/jgp.98.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deuticke B. Monocarboxylate transport in erythrocytes. J Membr Biol. 1982;70(2):89–103. doi: 10.1007/BF01870219. [DOI] [PubMed] [Google Scholar]
  7. Dubinsky W. P., Racker E. The mechanism of lactate transport in human erythrocytes. J Membr Biol. 1978 Dec 8;44(1):25–36. doi: 10.1007/BF01940571. [DOI] [PubMed] [Google Scholar]
  8. Garcia C. K., Brown M. S., Pathak R. K., Goldstein J. L. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem. 1995 Jan 27;270(4):1843–1849. doi: 10.1074/jbc.270.4.1843. [DOI] [PubMed] [Google Scholar]
  9. Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G., Brown M. S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76(5):865–873. doi: 10.1016/0092-8674(94)90361-1. [DOI] [PubMed] [Google Scholar]
  10. Gerhart D. Z., Enerson B. E., Zhdankina O. Y., Leino R. L., Drewes L. R. Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia. 1998 Mar;22(3):272–281. [PubMed] [Google Scholar]
  11. Jackson V. N., Halestrap A. P. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem. 1996 Jan 12;271(2):861–868. doi: 10.1074/jbc.271.2.861. [DOI] [PubMed] [Google Scholar]
  12. Jackson V. N., Price N. T., Carpenter L., Halestrap A. P. Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J. 1997 Jun 1;324(Pt 2):447–453. doi: 10.1042/bj3240447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev. 1997 Apr;77(2):321–358. doi: 10.1152/physrev.1997.77.2.321. [DOI] [PubMed] [Google Scholar]
  14. Kim C. M., Goldstein J. L., Brown M. S. cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J Biol Chem. 1992 Nov 15;267(32):23113–23121. [PubMed] [Google Scholar]
  15. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  16. Munsch T., Deitmer J. W. Sodium-bicarbonate cotransport current in identified leech glial cells. J Physiol. 1994 Jan 1;474(1):43–53. doi: 10.1113/jphysiol.1994.sp020001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Poole R. C., Halestrap A. P. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993 Apr;264(4 Pt 1):C761–C782. doi: 10.1152/ajpcell.1993.264.4.C761. [DOI] [PubMed] [Google Scholar]
  18. Price N. T., Jackson V. N., Halestrap A. P. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J. 1998 Jan 15;329(Pt 2):321–328. doi: 10.1042/bj3290321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang X., Levi A. J., Halestrap A. P. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. Am J Physiol. 1994 Nov;267(5 Pt 2):H1759–H1769. doi: 10.1152/ajpheart.1994.267.5.H1759. [DOI] [PubMed] [Google Scholar]
  20. Yoon H., Fanelli A., Grollman E. F., Philp N. J. Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem Biophys Res Commun. 1997 May 8;234(1):90–94. doi: 10.1006/bbrc.1997.6588. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES