Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 1;333(Pt 1):175–181. doi: 10.1042/bj3330175

Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats.

F Takahashi 1, K Morita 1, K Katai 1, H Segawa 1, A Fujioka 1, T Kouda 1, S Tatsumi 1, T Nii 1, Y Taketani 1, H Haga 1, S Hisano 1, Y Fukui 1, K I Miyamoto 1, E Takeda 1
PMCID: PMC1219570  PMID: 9639577

Abstract

Dietary Pi and parathyroid hormone (PTH) are two most important physiological and pathophysiological regulators of Pi re-absorption in the renal proximal tubule. Effects of dietary Pi on Na+/Pi co-transporter NaPi-2 were investigated in thyroparathyroidectomized (TPTX) rats. NaPi-2 protein and mRNA in the kidney cortex of TPTX rats were increased approximately 3.8- and 2.4-fold in amount respectively compared with those in the sham-operated animals. Administration of PTH to the TPTX rats resulted in a decrease in the amount of NaPi-2 protein, but not in the abundance of NaPi-2 mRNA. Deprivation of dietary Pi in the TPTX rats did not affect the amount of NaPi-2 mRNA and protein. In the Pi-deprived TPTX rats, feeding of a high-Pi diet resulted in marked decreases in Pi transport activity and the amount of NaPi-2 protein in the superficial nephrons. Immunohistochemical analysis demonstrated that administration of PTH to TPTX rats resulted in a decrease in NaPi-2 immunoreactivity from both superficial and juxtamedullary nephrons within 4 h. Switching TPTX animals from a low-Pi diet to the high-Pi diet decreased NaPi-2 immunoreactivity from superficial nephrons, but not from juxtamedullary nephrons, within 4 h. These results suggest that dietary Pi could regulate the amount of NaPi-2 protein in the superficial nephrons in a PTH-independent manner.

Full Text

The Full Text of this article is available as a PDF (469.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biber J., Forgo J., Murer H. Modulation of Na+-Pi cotransport in opossum kidney cells by extracellular phosphate. Am J Physiol. 1988 Aug;255(2 Pt 1):C155–C161. doi: 10.1152/ajpcell.1988.255.2.C155. [DOI] [PubMed] [Google Scholar]
  2. Bringhurst F. R., Juppner H., Guo J., Urena P., Potts J. T., Jr, Kronenberg H. M., Abou-Samra A. B., Segre G. V. Cloned, stably expressed parathyroid hormone (PTH)/PTH-related peptide receptors activate multiple messenger signals and biological responses in LLC-PK1 kidney cells. Endocrinology. 1993 May;132(5):2090–2098. doi: 10.1210/endo.132.5.8386606. [DOI] [PubMed] [Google Scholar]
  3. Brunette M. G., Chan M., Maag U., Béliveau R. Phosphate uptake by superficial and deep nephron brush border membranes. Effect of the dietary phosphate and parathyroid hormone. Pflugers Arch. 1984 Apr;400(4):356–362. doi: 10.1007/BF00587532. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Dousa T. P., Duarte C. G., Knox F. G. Effect of colchicine on urinary phosphate and regulation by parathyroid hormone. Am J Physiol. 1976 Jul;231(1):61–65. doi: 10.1152/ajplegacy.1976.231.1.61. [DOI] [PubMed] [Google Scholar]
  6. Friedlander G., Couette S., Coureau C., Amiel C. Mechanisms whereby extracellular adenosine 3',5'-monophosphate inhibits phosphate transport in cultured opossum kidney cells and in rat kidney. Physiological implication. J Clin Invest. 1992 Sep;90(3):848–858. doi: 10.1172/JCI115960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedlander G., Prié D., Siegfried G., Amiel C. Role of renal handling of extracellular nucleotides in modulation of phosphate transport. Kidney Int. 1996 Apr;49(4):1019–1022. doi: 10.1038/ki.1996.147. [DOI] [PubMed] [Google Scholar]
  8. Haramati A., Knox F. G. Tubular capacity of phosphate transport in phosphate-deprived rats: effects of nicotinamide and PTH. Am J Physiol. 1983 Feb;244(2):F178–F184. doi: 10.1152/ajprenal.1983.244.2.F178. [DOI] [PubMed] [Google Scholar]
  9. Hayes G., Busch A. E., Lang F., Biber J., Murer H. Protein kinase C consensus sites and the regulation of renal Na/Pi-cotransport (NaPi-2) expressed in XENOPUS laevis oocytes. Pflugers Arch. 1995 Sep;430(5):819–824. doi: 10.1007/BF00386181. [DOI] [PubMed] [Google Scholar]
  10. Hisano S., Haga H., Miyamoto K., Takeda E., Fukui Y. The basic amino acid transporter (rBAT)-like immunoreactivity in paraventricular and supraoptic magnocellular neurons of the rat hypothalamus. Brain Res. 1996 Feb 26;710(1-2):299–302. doi: 10.1016/0006-8993(95)01442-x. [DOI] [PubMed] [Google Scholar]
  11. Katai K., Segawa H., Haga H., Morita K., Arai H., Tatsumi S., Taketani Y., Miyamoto K., Hisano S., Fukui Y. Acute regulation by dietary phosphate of the sodium-dependent phosphate transporter (NaP(i)-2) in rat kidney. J Biochem. 1997 Jan;121(1):50–55. doi: 10.1093/oxfordjournals.jbchem.a021569. [DOI] [PubMed] [Google Scholar]
  12. Kavanaugh M. P., Kabat D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int. 1996 Apr;49(4):959–963. doi: 10.1038/ki.1996.135. [DOI] [PubMed] [Google Scholar]
  13. Kilav R., Silver J., Biber J., Murer H., Naveh-Many T. Coordinate regulation of rat renal parathyroid hormone receptor mRNA and Na-Pi cotransporter mRNA and protein. Am J Physiol. 1995 Jun;268(6 Pt 2):F1017–F1022. doi: 10.1152/ajprenal.1995.268.6.F1017. [DOI] [PubMed] [Google Scholar]
  14. Levi M., Kempson S. A., Lötscher M., Biber J., Murer H. Molecular regulation of renal phosphate transport. J Membr Biol. 1996 Nov;154(1):1–9. doi: 10.1007/s002329900127. [DOI] [PubMed] [Google Scholar]
  15. Loghman-Adham M. Adaptation to changes in dietary phosphorus intake in health and in renal failure. J Lab Clin Med. 1997 Feb;129(2):176–188. doi: 10.1016/s0022-2143(97)90137-2. [DOI] [PubMed] [Google Scholar]
  16. Lötscher M., Wilson P., Nguyen S., Kaissling B., Biber J., Murer H., Levi M. New aspects of adaptation of rat renal Na-Pi cotransporter to alterations in dietary phosphate. Kidney Int. 1996 Apr;49(4):1012–1018. doi: 10.1038/ki.1996.146. [DOI] [PubMed] [Google Scholar]
  17. Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malmström K., Murer H. Parathyroid hormone inhibits phosphate transport in OK cells but not in LLC-PK1 and JTC-12.P3 cells. Am J Physiol. 1986 Jul;251(1 Pt 1):C23–C31. doi: 10.1152/ajpcell.1986.251.1.C23. [DOI] [PubMed] [Google Scholar]
  19. Malmström K., Murer H. Parathyroid hormone regulates phosphate transport in OK cells via an irreversible inactivation of a membrane protein. FEBS Lett. 1987 Jun 1;216(2):257–260. doi: 10.1016/0014-5793(87)80701-9. [DOI] [PubMed] [Google Scholar]
  20. Minami H., Kim J. R., Tada K., Takahashi F., Miyamoto K., Nakabou Y., Sakai K., Hagihira H. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats. Gastroenterology. 1993 Sep;105(3):692–697. doi: 10.1016/0016-5085(93)90884-f. [DOI] [PubMed] [Google Scholar]
  21. Murer H., Biber J. A molecular view of proximal tubular inorganic phosphate (Pi) reabsorption and of its regulation. Pflugers Arch. 1997 Feb;433(4):379–389. doi: 10.1007/s004240050292. [DOI] [PubMed] [Google Scholar]
  22. Nakagawa N., Arab N., Ghishan F. K. Characterization of the defect in the Na(+)-phosphate transporter in vitamin D-resistant hypophosphatemic mice. J Biol Chem. 1991 Jul 25;266(21):13616–13620. [PubMed] [Google Scholar]
  23. Pfister M. F., Lederer E., Forgo J., Ziegler U., Lötscher M., Quabius E. S., Biber J., Murer H. Parathyroid hormone-dependent degradation of type II Na+/Pi cotransporters. J Biol Chem. 1997 Aug 8;272(32):20125–20130. doi: 10.1074/jbc.272.32.20125. [DOI] [PubMed] [Google Scholar]
  24. Yusufi A. N., Murayama N., Gapstur S. M., Szczepanska-Konkel M., Dousa T. P. Differential properties of brush-border membrane vesicles from early and late proximal tubules of rat kidney. Biochim Biophys Acta. 1994 Apr 20;1191(1):117–132. doi: 10.1016/0005-2736(94)90239-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES