Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 1;333(Pt 1):223–232. doi: 10.1042/bj3330223

Identification of skatolyl hydroperoxide and its role in the peroxidase-catalysed oxidation of indol-3-yl acetic acid.

I G Gazarian 1, L M Lagrimini 1, F A Mellon 1, M J Naldrett 1, G A Ashby 1, R N Thorneley 1
PMCID: PMC1219576  PMID: 9639583

Abstract

Indol-3-yl acetic acid (IAA, auxin) is a plant hormone whose degradation is a key determinant of plant growth and development. The first evidence for skatolyl hydroperoxide formation during the plant peroxidase-catalysed degradation of IAA has been obtained by electrospray MS. Skatolyl hydroperoxide degrades predominantly non-enzymically to oxindol-3-yl carbinol but in part enzymically into indol-3-yl methanol via a peroxidase cycle in which IAA acts as an electron donor. Skatolyl hydroperoxide is degradable by catalase. Horseradish peroxidase isoenzyme C (HRP-C) and anionic tobacco peroxidase (TOP) exhibit differences in their mechanisms of reaction. The insensitivity of the HRP-C-catalysed reaction to catalase is ascribed to the formation of HRP-C Compound III at the initiation step and its subsequent role in radical propagation. This is in contrast with the TOP-catalysed process in which skatolyl hydroperoxide has a key role. Indol-3-yl aldehyde is produced not via the peroxidase cycle but by catalysis involving ferrous peroxidase. Because indol-3-yl aldehyde is one of the main IAA-derived products identified in planta, we conclude that ferrous peroxidases participate in IAA catalytic transformations in vivo. A general scheme for peroxidase-catalysed IAA oxidation is presented.

Full Text

The Full Text of this article is available as a PDF (798.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dietz R., Nastainczyk W., Ruf H. H. Higher oxidation states of prostaglandin H synthase. Rapid electronic spectroscopy detected two spectral intermediates during the peroxidase reaction with prostaglandin G2. Eur J Biochem. 1988 Jan 15;171(1-2):321–328. doi: 10.1111/j.1432-1033.1988.tb13793.x. [DOI] [PubMed] [Google Scholar]
  2. Ferrer M. A., Pedreño M. A., Muñoz R., Barceló A. R. Oxidation of coniferyl alcohol by cell wall peroxidases at the expense of indole-3-acetic acid and O2. A model for the lignification of plant cell walls in the absence of H2O2. FEBS Lett. 1990 Dec 10;276(1-2):127–130. doi: 10.1016/0014-5793(90)80524-m. [DOI] [PubMed] [Google Scholar]
  3. Gazaryan I. G., Lagrimini L. M., Ashby G. A., Thorneley R. N. Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J. 1996 Feb 1;313(Pt 3):841–847. doi: 10.1042/bj3130841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gazaryan I. G., Lagrimini L. M. Purification and unusual kinetic properties of a tobacco anionic peroxidase. Phytochemistry. 1996 Mar;41(4):1029–1034. doi: 10.1016/0031-9422(95)00779-2. [DOI] [PubMed] [Google Scholar]
  5. HINMAN R. L., LANG J. PEROXIDASE-CATALYZED OXIDATION OF INDOLE-3-ACETIC ACID. Biochemistry. 1965 Jan;4:144–158. doi: 10.1021/bi00877a023. [DOI] [PubMed] [Google Scholar]
  6. KENTEN R. H. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem J. 1955 Jan;59(1):110–121. doi: 10.1042/bj0590110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Khindaria A., Yamazaki I., Aust S. D. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry. 1996 May 21;35(20):6418–6424. doi: 10.1021/bi9601666. [DOI] [PubMed] [Google Scholar]
  8. Khindaria A., Yamazaki I., Aust S. D. Veratryl alcohol oxidation by lignin peroxidase. Biochemistry. 1995 Dec 26;34(51):16860–16869. doi: 10.1021/bi00051a037. [DOI] [PubMed] [Google Scholar]
  9. Krylov S. N., Brian Dunford H. Evidence for a free radical chain mechanism in the reaction between peroxidase and indole-3-acetic acid at neutral pH. Biophys Chem. 1996 Feb 8;58(3):325–334. doi: 10.1016/0301-4622(95)00102-6. [DOI] [PubMed] [Google Scholar]
  10. Lambeir A. M., Markey C. M., Dunford H. B., Marnett L. J. Spectral properties of the higher oxidation states of prostaglandin H synthase. J Biol Chem. 1985 Dec 5;260(28):14894–14896. [PubMed] [Google Scholar]
  11. Lebedeva O. V., Ugarova N. N., Berezin I. V. Sovmestnoe okislenie ferrotsianina kaliia i o-dianizidina perekis'iu vodoroda, kataliziruemoe peroksidazoi iz khrena. Substrat-substratnaia aktivatsiia. Biokhimiia. 1981 Jul;46(7):1202–1209. [PubMed] [Google Scholar]
  12. Nakajima R., Yamazaki I. The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases. J Biol Chem. 1979 Feb 10;254(3):872–878. [PubMed] [Google Scholar]
  13. Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
  14. Ricard J., Job D. Reaction mechanisms of indole-3-acetate degradation by peroxidases. A stopped-flow and low-temperature spectroscopic study. Eur J Biochem. 1974 May 15;44(2):359–374. doi: 10.1111/j.1432-1033.1974.tb03493.x. [DOI] [PubMed] [Google Scholar]
  15. Rodriguez-Lopez J. N., Smith A. T., Thorneley R. N. Effect of distal cavity mutations on the binding and activation of oxygen by ferrous horseradish peroxidase. J Biol Chem. 1997 Jan 3;272(1):389–395. doi: 10.1074/jbc.272.1.389. [DOI] [PubMed] [Google Scholar]
  16. Smith A. M., Morrison W. L., Milham P. J. Oxidation of indole-3-acetic acid by peroxidase: involvement of reduced peroxidase and compound III with superoxide as a product. Biochemistry. 1982 Aug 31;21(18):4414–4419. doi: 10.1021/bi00261a034. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES