Abstract
Indol-3-yl acetic acid (IAA, auxin) is a plant hormone whose degradation is a key determinant of plant growth and development. The first evidence for skatolyl hydroperoxide formation during the plant peroxidase-catalysed degradation of IAA has been obtained by electrospray MS. Skatolyl hydroperoxide degrades predominantly non-enzymically to oxindol-3-yl carbinol but in part enzymically into indol-3-yl methanol via a peroxidase cycle in which IAA acts as an electron donor. Skatolyl hydroperoxide is degradable by catalase. Horseradish peroxidase isoenzyme C (HRP-C) and anionic tobacco peroxidase (TOP) exhibit differences in their mechanisms of reaction. The insensitivity of the HRP-C-catalysed reaction to catalase is ascribed to the formation of HRP-C Compound III at the initiation step and its subsequent role in radical propagation. This is in contrast with the TOP-catalysed process in which skatolyl hydroperoxide has a key role. Indol-3-yl aldehyde is produced not via the peroxidase cycle but by catalysis involving ferrous peroxidase. Because indol-3-yl aldehyde is one of the main IAA-derived products identified in planta, we conclude that ferrous peroxidases participate in IAA catalytic transformations in vivo. A general scheme for peroxidase-catalysed IAA oxidation is presented.
Full Text
The Full Text of this article is available as a PDF (798.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dietz R., Nastainczyk W., Ruf H. H. Higher oxidation states of prostaglandin H synthase. Rapid electronic spectroscopy detected two spectral intermediates during the peroxidase reaction with prostaglandin G2. Eur J Biochem. 1988 Jan 15;171(1-2):321–328. doi: 10.1111/j.1432-1033.1988.tb13793.x. [DOI] [PubMed] [Google Scholar]
- Ferrer M. A., Pedreño M. A., Muñoz R., Barceló A. R. Oxidation of coniferyl alcohol by cell wall peroxidases at the expense of indole-3-acetic acid and O2. A model for the lignification of plant cell walls in the absence of H2O2. FEBS Lett. 1990 Dec 10;276(1-2):127–130. doi: 10.1016/0014-5793(90)80524-m. [DOI] [PubMed] [Google Scholar]
- Gazaryan I. G., Lagrimini L. M., Ashby G. A., Thorneley R. N. Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J. 1996 Feb 1;313(Pt 3):841–847. doi: 10.1042/bj3130841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazaryan I. G., Lagrimini L. M. Purification and unusual kinetic properties of a tobacco anionic peroxidase. Phytochemistry. 1996 Mar;41(4):1029–1034. doi: 10.1016/0031-9422(95)00779-2. [DOI] [PubMed] [Google Scholar]
- HINMAN R. L., LANG J. PEROXIDASE-CATALYZED OXIDATION OF INDOLE-3-ACETIC ACID. Biochemistry. 1965 Jan;4:144–158. doi: 10.1021/bi00877a023. [DOI] [PubMed] [Google Scholar]
- KENTEN R. H. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem J. 1955 Jan;59(1):110–121. doi: 10.1042/bj0590110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khindaria A., Yamazaki I., Aust S. D. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry. 1996 May 21;35(20):6418–6424. doi: 10.1021/bi9601666. [DOI] [PubMed] [Google Scholar]
- Khindaria A., Yamazaki I., Aust S. D. Veratryl alcohol oxidation by lignin peroxidase. Biochemistry. 1995 Dec 26;34(51):16860–16869. doi: 10.1021/bi00051a037. [DOI] [PubMed] [Google Scholar]
- Krylov S. N., Brian Dunford H. Evidence for a free radical chain mechanism in the reaction between peroxidase and indole-3-acetic acid at neutral pH. Biophys Chem. 1996 Feb 8;58(3):325–334. doi: 10.1016/0301-4622(95)00102-6. [DOI] [PubMed] [Google Scholar]
- Lambeir A. M., Markey C. M., Dunford H. B., Marnett L. J. Spectral properties of the higher oxidation states of prostaglandin H synthase. J Biol Chem. 1985 Dec 5;260(28):14894–14896. [PubMed] [Google Scholar]
- Lebedeva O. V., Ugarova N. N., Berezin I. V. Sovmestnoe okislenie ferrotsianina kaliia i o-dianizidina perekis'iu vodoroda, kataliziruemoe peroksidazoi iz khrena. Substrat-substratnaia aktivatsiia. Biokhimiia. 1981 Jul;46(7):1202–1209. [PubMed] [Google Scholar]
- Nakajima R., Yamazaki I. The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases. J Biol Chem. 1979 Feb 10;254(3):872–878. [PubMed] [Google Scholar]
- Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
- Ricard J., Job D. Reaction mechanisms of indole-3-acetate degradation by peroxidases. A stopped-flow and low-temperature spectroscopic study. Eur J Biochem. 1974 May 15;44(2):359–374. doi: 10.1111/j.1432-1033.1974.tb03493.x. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Lopez J. N., Smith A. T., Thorneley R. N. Effect of distal cavity mutations on the binding and activation of oxygen by ferrous horseradish peroxidase. J Biol Chem. 1997 Jan 3;272(1):389–395. doi: 10.1074/jbc.272.1.389. [DOI] [PubMed] [Google Scholar]
- Smith A. M., Morrison W. L., Milham P. J. Oxidation of indole-3-acetic acid by peroxidase: involvement of reduced peroxidase and compound III with superoxide as a product. Biochemistry. 1982 Aug 31;21(18):4414–4419. doi: 10.1021/bi00261a034. [DOI] [PubMed] [Google Scholar]