Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 15;333(Pt 2):269–274. doi: 10.1042/bj3330269

Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets.

P Detimary 1, P Gilon 1, J C Henquin 1
PMCID: PMC1219582  PMID: 9657965

Abstract

In pancreatic beta cells, the increase in the ATP/ADP ratio that follows a stimulation by glucose is thought to play an important role in the Ca2+-dependent increase in insulin secretion. Here we have investigated the possible interactions between Ca2+ and adenine nucleotides in mouse islets. Measurements of both parameters in the same single islet showed that the rise in the ATP/ADP ratio precedes any rise in the cytoplasmic free-Ca2+ concentration ([Ca2+]i) and is already present during the initial transient lowering of [Ca2+]i produced by the sugar. Blockade of Ca2+ influx with nimodipine did not prevent the concentration-dependent increase in the ATP/ADP ratio produced by glucose and even augmented the ratio at all glucose concentrations which normally stimulate Ca2+ influx. In contrast, stimulation of Ca2+ influx by 30 mM K+ or 100 microM tolbutamide lowered the ATP/ADP ratio. This lowering was of rapid onset and reversibility, sustained and prevented by nimodipine or omission of extracellular Ca2+. It was, however, not attenuated after blockade of secretion by activation of alpha2-adrenoceptors. The difference in islet ATP/ADP ratio during blockade and stimulation of Ca2+ influx was similar to that observed between threshold and submaximal glucose concentrations. The results suggest that the following feedback loop could control the oscillations of membrane potential and [Ca2+]i in beta cells. Glucose metabolism increases the ATP/ADP ratio in a Ca2+-independent manner, which leads to closure of ATP-sensitive K+ channels, depolarization and stimulation of Ca2+ influx. The resulting increase in [Ca2+]i causes a larger consumption than production of ATP, which induces reopening of ATP-sensitive K+ channels and arrest of Ca2+ influx. Upon lowering of [Ca2+]i the ATP/ADP ratio increases again and a new cycle may start.

Full Text

The Full Text of this article is available as a PDF (378.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft S. J., Weerasinghe L. C., Randle P. J. Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J. 1973 Feb;132(2):223–231. doi: 10.1042/bj1320223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunengraber H., Boutry M., Lowenstein J. M. Fatty acid and 3- -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem. 1973 Apr 25;248(8):2656–2669. [PubMed] [Google Scholar]
  4. Civelek V. N., Deeney J. T., Kubik K., Schultz V., Tornheim K., Corkey B. E. Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT). Biochem J. 1996 May 1;315(Pt 3):1015–1019. doi: 10.1042/bj3151015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Corkey B. E., Deeney J. T., Glennon M. C., Matschinsky F. M., Prentki M. Regulation of steady-state free Ca2+ levels by the ATP/ADP ratio and orthophosphate in permeabilized RINm5F insulinoma cells. J Biol Chem. 1988 Mar 25;263(9):4247–4253. [PubMed] [Google Scholar]
  6. Detimary P., Jonas J. C., Henquin J. C. Possible links between glucose-induced changes in the energy state of pancreatic B cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets. J Clin Invest. 1995 Oct;96(4):1738–1745. doi: 10.1172/JCI118219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Detimary P., Jonas J. C., Henquin J. C. Stable and diffusible pools of nucleotides in pancreatic islet cells. Endocrinology. 1996 Nov;137(11):4671–4676. doi: 10.1210/endo.137.11.8895332. [DOI] [PubMed] [Google Scholar]
  8. Detimary P., Van den Berghe G., Henquin J. C. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem. 1996 Aug 23;271(34):20559–20565. doi: 10.1074/jbc.271.34.20559. [DOI] [PubMed] [Google Scholar]
  9. Duchen M. R., Smith P. A., Ashcroft F. M. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J. 1993 Aug 15;294(Pt 1):35–42. doi: 10.1042/bj2940035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eliasson L., Renström E., Ding W. G., Proks P., Rorsman P. Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells. J Physiol. 1997 Sep 1;503(Pt 2):399–412. doi: 10.1111/j.1469-7793.1997.399bh.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erecińska M., Bryła J., Michalik M., Meglasson M. D., Nelson D. Energy metabolism in islets of Langerhans. Biochim Biophys Acta. 1992 Aug 7;1101(3):273–295. doi: 10.1016/0005-2728(92)90084-f. [DOI] [PubMed] [Google Scholar]
  12. Garcia-Barrado M. J., Gilon P., Sato Y., Nenquin M., Henquin J. C. No evidence for a role of reverse Na(+)-Ca2+ exchange in insulin release from mouse pancreatic islets. Am J Physiol. 1996 Sep;271(3 Pt 1):E426–E433. doi: 10.1152/ajpendo.1996.271.3.E426. [DOI] [PubMed] [Google Scholar]
  13. Gembal M., Detimary P., Gilon P., Gao Z. Y., Henquin J. C. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest. 1993 Mar;91(3):871–880. doi: 10.1172/JCI116308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gembal M., Gilon P., Henquin J. C. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest. 1992 Apr;89(4):1288–1295. doi: 10.1172/JCI115714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilon P., Henquin J. C. Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem. 1992 Oct 15;267(29):20713–20720. [PubMed] [Google Scholar]
  16. Gribble F. M., Tucker S. J., Ashcroft F. M. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J. 1997 Mar 17;16(6):1145–1152. doi: 10.1093/emboj/16.6.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gylfe E. Nutrient secretagogues induce bimodal early changes in cytoplasmic calcium of insulin-releasing ob/ob mouse beta-cells. J Biol Chem. 1988 Sep 25;263(27):13750–13754. [PubMed] [Google Scholar]
  18. Hellman B., Idahl L. A., Danielsson A. Adenosine triphosphate levels of mammalian pancreatic B cells after stimulation with glucose and hypoglycemic sulfonylureas. Diabetes. 1969 Aug;18(8):509–516. doi: 10.2337/diab.18.8.509. [DOI] [PubMed] [Google Scholar]
  19. Henquin J. C. Glucose-induced electrical activity in beta-cells. Feedback control of ATP-sensitive K+ channels by Ca2+? [corrected]. Diabetes. 1990 Nov;39(11):1457–1460. doi: 10.2337/diab.39.11.1457. [DOI] [PubMed] [Google Scholar]
  20. Hopkins W. F., Fatherazi S., Peter-Riesch B., Corkey B. E., Cook D. L. Two sites for adenine-nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic beta-cells and HIT cells. J Membr Biol. 1992 Sep;129(3):287–295. doi: 10.1007/BF00232910. [DOI] [PubMed] [Google Scholar]
  21. Hutton J. C., Malaisse W. J. Dynamics of O2 consumption in rat pancreatic islets. Diabetologia. 1980 May;18(5):395–405. doi: 10.1007/BF00276821. [DOI] [PubMed] [Google Scholar]
  22. Kawazu S., Sener A., Couturier E., Malaisse W. J. Metabolic, cationic and secretory effects of hypoglycemic sulfonylureas in pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol. 1980 Jul;312(3):277–283. doi: 10.1007/BF00499158. [DOI] [PubMed] [Google Scholar]
  23. Keizer J., Magnus G. ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study. Biophys J. 1989 Aug;56(2):229–242. doi: 10.1016/S0006-3495(89)82669-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krzanowski J. J., Jr, Fertel R., Matschinsky F. M. Energy metabolism in pancreatic islets of rats. Studies with tolbutamide and hypoxia. Diabetes. 1971 Sep;20(9):598–606. doi: 10.2337/diab.20.9.598. [DOI] [PubMed] [Google Scholar]
  25. MacDonald M. J., Brown L. J. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch Biochem Biophys. 1996 Feb 1;326(1):79–84. doi: 10.1006/abbi.1996.0049. [DOI] [PubMed] [Google Scholar]
  26. Malaisse W. J., Hutton J. C., Kawazu S., Herchuelz A., Valverde I., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia. 1979 May;16(5):331–341. doi: 10.1007/BF01223623. [DOI] [PubMed] [Google Scholar]
  27. Matschinsky F. M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 1996 Feb;45(2):223–241. doi: 10.2337/diab.45.2.223. [DOI] [PubMed] [Google Scholar]
  28. McCormack J. G., Longo E. A., Corkey B. E. Glucose-induced activation of pyruvate dehydrogenase in isolated rat pancreatic islets. Biochem J. 1990 Apr 15;267(2):527–530. doi: 10.1042/bj2670527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meglasson M. D., Nelson J., Nelson D., Erecinska M. Bioenergetic response of pancreatic islets to stimulation by fuel molecules. Metabolism. 1989 Dec;38(12):1188–1195. doi: 10.1016/0026-0495(89)90158-3. [DOI] [PubMed] [Google Scholar]
  30. Misler S., Barnett D. W., Pressel D. M., Gillis K. D., Scharp D. W., Falke L. C. Stimulus-secretion coupling in beta-cells of transplantable human islets of Langerhans. Evidence for a critical role for Ca2+ entry. Diabetes. 1992 Jun;41(6):662–670. doi: 10.2337/diab.41.6.662. [DOI] [PubMed] [Google Scholar]
  31. Nelson B. D., Kabir F., Muchiri P. Altered metabolic states do not change the intracellular distribution of hexokinase in Zajdela hepatoma ascites cells. Biochem J. 1984 Apr 1;219(1):159–164. doi: 10.1042/bj2190159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Newgard C. B., McGarry J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995;64:689–719. doi: 10.1146/annurev.bi.64.070195.003353. [DOI] [PubMed] [Google Scholar]
  33. Nichols C. G., Shyng S. L., Nestorowicz A., Glaser B., Clement J. P., 4th, Gonzalez G., Aguilar-Bryan L., Permutt M. A., Bryan J. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science. 1996 Jun 21;272(5269):1785–1787. doi: 10.1126/science.272.5269.1785. [DOI] [PubMed] [Google Scholar]
  34. Nilsson T., Arkhammar P., Rorsman P., Berggren P. O. Inhibition of glucose-stimulated insulin release by alpha 2-adrenoceptor activation is parallelled by both a repolarization and a reduction in cytoplasmic free Ca2+ concentration. J Biol Chem. 1988 Feb 5;263(4):1855–1860. [PubMed] [Google Scholar]
  35. Nilsson T., Schultz V., Berggren P. O., Corkey B. E., Tornheim K. Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J. 1996 Feb 15;314(Pt 1):91–94. doi: 10.1042/bj3140091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ohta M., Nelson D., Nelson J., Meglasson M. D., Erecińska M. Relationships between energy level and insulin secretion in isolated rat islets of Langerhans. A study at various pH values. Biochem Pharmacol. 1991 Jul 15;42(3):593–598. doi: 10.1016/0006-2952(91)90322-v. [DOI] [PubMed] [Google Scholar]
  37. Ohta M., Nelson J., Nelson D., Meglasson M. D., Erecińska M. Effect of Ca++ channel blockers on energy level and stimulated insulin secretion in isolated rat islets of Langerhans. J Pharmacol Exp Ther. 1993 Jan;264(1):35–40. [PubMed] [Google Scholar]
  38. Panten U., Zünkler B. J., Scheit S., Kirchhoff K., Lenzen S. Regulation of energy metabolism in pancreatic islets by glucose and tolbutamide. Diabetologia. 1986 Sep;29(9):648–654. doi: 10.1007/BF00869265. [DOI] [PubMed] [Google Scholar]
  39. Plant T. D. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol. 1988 Oct;404:731–747. doi: 10.1113/jphysiol.1988.sp017316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pralong W. F., Spät A., Wollheim C. B. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem. 1994 Nov 4;269(44):27310–27314. [PubMed] [Google Scholar]
  41. Roe M. W., Mertz R. J., Lancaster M. E., Worley J. F., 3rd, Dukes I. D. Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans. Am J Physiol. 1994 Jun;266(6 Pt 1):E852–E862. doi: 10.1152/ajpendo.1994.266.6.E852. [DOI] [PubMed] [Google Scholar]
  42. Rutter G. A., Pralong W. F., Wollheim C. B. Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1). Biochim Biophys Acta. 1992 Dec 15;1175(1):107–113. doi: 10.1016/0167-4889(92)90016-5. [DOI] [PubMed] [Google Scholar]
  43. Santos R. M., Rosario L. M., Nadal A., Garcia-Sancho J., Soria B., Valdeolmillos M. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 1991 May;418(4):417–422. doi: 10.1007/BF00550880. [DOI] [PubMed] [Google Scholar]
  44. Sener A., Malaisse W. J. Hexose metabolism in pancreatic islets. Regulation of D-[6-14C]glucose oxidation by non-nutrient secretagogues. Mol Cell Endocrinol. 1991 Apr;76(1-3):1–6. doi: 10.1016/0303-7207(91)90253-o. [DOI] [PubMed] [Google Scholar]
  45. Sener A., Rasschaert J., Malaisse W. J. Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function. Biochim Biophys Acta. 1990 Aug 9;1019(1):42–50. doi: 10.1016/0005-2728(90)90122-k. [DOI] [PubMed] [Google Scholar]
  46. Tamarit-Rodriguez J., Hellman B., Sehilin J. Metabolic characteristics of pancreatic beta-cells exposed to calcium-transporting ionophores. Biochim Biophys Acta. 1977 Jan 24;496(1):167–174. doi: 10.1016/0304-4165(77)90124-6. [DOI] [PubMed] [Google Scholar]
  47. Thomsen C., Jensen K. E., Astrup A., Bülow J., Henriksen O. Changes of high-energy phosphorous compounds in skeletal muscle during glucose-induced thermogenesis in man. A 31P MR spectroscopy study. Acta Physiol Scand. 1989 Nov;137(3):335–339. doi: 10.1111/j.1748-1716.1989.tb08761.x. [DOI] [PubMed] [Google Scholar]
  48. Tornheim K. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes. 1997 Sep;46(9):1375–1380. doi: 10.2337/diab.46.9.1375. [DOI] [PubMed] [Google Scholar]
  49. Van Schaftingen E., Hue L., Hers H. G. Study of the fructose 6-phosphate/fructose 1,6-bi-phosphate cycle in the liver in vivo. Biochem J. 1980 Oct 15;192(1):263–271. doi: 10.1042/bj1920263. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES