Abstract
In pancreatic beta cells, the increase in the ATP/ADP ratio that follows a stimulation by glucose is thought to play an important role in the Ca2+-dependent increase in insulin secretion. Here we have investigated the possible interactions between Ca2+ and adenine nucleotides in mouse islets. Measurements of both parameters in the same single islet showed that the rise in the ATP/ADP ratio precedes any rise in the cytoplasmic free-Ca2+ concentration ([Ca2+]i) and is already present during the initial transient lowering of [Ca2+]i produced by the sugar. Blockade of Ca2+ influx with nimodipine did not prevent the concentration-dependent increase in the ATP/ADP ratio produced by glucose and even augmented the ratio at all glucose concentrations which normally stimulate Ca2+ influx. In contrast, stimulation of Ca2+ influx by 30 mM K+ or 100 microM tolbutamide lowered the ATP/ADP ratio. This lowering was of rapid onset and reversibility, sustained and prevented by nimodipine or omission of extracellular Ca2+. It was, however, not attenuated after blockade of secretion by activation of alpha2-adrenoceptors. The difference in islet ATP/ADP ratio during blockade and stimulation of Ca2+ influx was similar to that observed between threshold and submaximal glucose concentrations. The results suggest that the following feedback loop could control the oscillations of membrane potential and [Ca2+]i in beta cells. Glucose metabolism increases the ATP/ADP ratio in a Ca2+-independent manner, which leads to closure of ATP-sensitive K+ channels, depolarization and stimulation of Ca2+ influx. The resulting increase in [Ca2+]i causes a larger consumption than production of ATP, which induces reopening of ATP-sensitive K+ channels and arrest of Ca2+ influx. Upon lowering of [Ca2+]i the ATP/ADP ratio increases again and a new cycle may start.
Full Text
The Full Text of this article is available as a PDF (378.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Weerasinghe L. C., Randle P. J. Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J. 1973 Feb;132(2):223–231. doi: 10.1042/bj1320223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunengraber H., Boutry M., Lowenstein J. M. Fatty acid and 3- -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem. 1973 Apr 25;248(8):2656–2669. [PubMed] [Google Scholar]
- Civelek V. N., Deeney J. T., Kubik K., Schultz V., Tornheim K., Corkey B. E. Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT). Biochem J. 1996 May 1;315(Pt 3):1015–1019. doi: 10.1042/bj3151015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corkey B. E., Deeney J. T., Glennon M. C., Matschinsky F. M., Prentki M. Regulation of steady-state free Ca2+ levels by the ATP/ADP ratio and orthophosphate in permeabilized RINm5F insulinoma cells. J Biol Chem. 1988 Mar 25;263(9):4247–4253. [PubMed] [Google Scholar]
- Detimary P., Jonas J. C., Henquin J. C. Possible links between glucose-induced changes in the energy state of pancreatic B cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets. J Clin Invest. 1995 Oct;96(4):1738–1745. doi: 10.1172/JCI118219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Detimary P., Jonas J. C., Henquin J. C. Stable and diffusible pools of nucleotides in pancreatic islet cells. Endocrinology. 1996 Nov;137(11):4671–4676. doi: 10.1210/endo.137.11.8895332. [DOI] [PubMed] [Google Scholar]
- Detimary P., Van den Berghe G., Henquin J. C. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem. 1996 Aug 23;271(34):20559–20565. doi: 10.1074/jbc.271.34.20559. [DOI] [PubMed] [Google Scholar]
- Duchen M. R., Smith P. A., Ashcroft F. M. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J. 1993 Aug 15;294(Pt 1):35–42. doi: 10.1042/bj2940035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eliasson L., Renström E., Ding W. G., Proks P., Rorsman P. Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells. J Physiol. 1997 Sep 1;503(Pt 2):399–412. doi: 10.1111/j.1469-7793.1997.399bh.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erecińska M., Bryła J., Michalik M., Meglasson M. D., Nelson D. Energy metabolism in islets of Langerhans. Biochim Biophys Acta. 1992 Aug 7;1101(3):273–295. doi: 10.1016/0005-2728(92)90084-f. [DOI] [PubMed] [Google Scholar]
- Garcia-Barrado M. J., Gilon P., Sato Y., Nenquin M., Henquin J. C. No evidence for a role of reverse Na(+)-Ca2+ exchange in insulin release from mouse pancreatic islets. Am J Physiol. 1996 Sep;271(3 Pt 1):E426–E433. doi: 10.1152/ajpendo.1996.271.3.E426. [DOI] [PubMed] [Google Scholar]
- Gembal M., Detimary P., Gilon P., Gao Z. Y., Henquin J. C. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest. 1993 Mar;91(3):871–880. doi: 10.1172/JCI116308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gembal M., Gilon P., Henquin J. C. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest. 1992 Apr;89(4):1288–1295. doi: 10.1172/JCI115714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilon P., Henquin J. C. Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem. 1992 Oct 15;267(29):20713–20720. [PubMed] [Google Scholar]
- Gribble F. M., Tucker S. J., Ashcroft F. M. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J. 1997 Mar 17;16(6):1145–1152. doi: 10.1093/emboj/16.6.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gylfe E. Nutrient secretagogues induce bimodal early changes in cytoplasmic calcium of insulin-releasing ob/ob mouse beta-cells. J Biol Chem. 1988 Sep 25;263(27):13750–13754. [PubMed] [Google Scholar]
- Hellman B., Idahl L. A., Danielsson A. Adenosine triphosphate levels of mammalian pancreatic B cells after stimulation with glucose and hypoglycemic sulfonylureas. Diabetes. 1969 Aug;18(8):509–516. doi: 10.2337/diab.18.8.509. [DOI] [PubMed] [Google Scholar]
- Henquin J. C. Glucose-induced electrical activity in beta-cells. Feedback control of ATP-sensitive K+ channels by Ca2+? [corrected]. Diabetes. 1990 Nov;39(11):1457–1460. doi: 10.2337/diab.39.11.1457. [DOI] [PubMed] [Google Scholar]
- Hopkins W. F., Fatherazi S., Peter-Riesch B., Corkey B. E., Cook D. L. Two sites for adenine-nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic beta-cells and HIT cells. J Membr Biol. 1992 Sep;129(3):287–295. doi: 10.1007/BF00232910. [DOI] [PubMed] [Google Scholar]
- Hutton J. C., Malaisse W. J. Dynamics of O2 consumption in rat pancreatic islets. Diabetologia. 1980 May;18(5):395–405. doi: 10.1007/BF00276821. [DOI] [PubMed] [Google Scholar]
- Kawazu S., Sener A., Couturier E., Malaisse W. J. Metabolic, cationic and secretory effects of hypoglycemic sulfonylureas in pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol. 1980 Jul;312(3):277–283. doi: 10.1007/BF00499158. [DOI] [PubMed] [Google Scholar]
- Keizer J., Magnus G. ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study. Biophys J. 1989 Aug;56(2):229–242. doi: 10.1016/S0006-3495(89)82669-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krzanowski J. J., Jr, Fertel R., Matschinsky F. M. Energy metabolism in pancreatic islets of rats. Studies with tolbutamide and hypoxia. Diabetes. 1971 Sep;20(9):598–606. doi: 10.2337/diab.20.9.598. [DOI] [PubMed] [Google Scholar]
- MacDonald M. J., Brown L. J. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch Biochem Biophys. 1996 Feb 1;326(1):79–84. doi: 10.1006/abbi.1996.0049. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Hutton J. C., Kawazu S., Herchuelz A., Valverde I., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia. 1979 May;16(5):331–341. doi: 10.1007/BF01223623. [DOI] [PubMed] [Google Scholar]
- Matschinsky F. M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 1996 Feb;45(2):223–241. doi: 10.2337/diab.45.2.223. [DOI] [PubMed] [Google Scholar]
- McCormack J. G., Longo E. A., Corkey B. E. Glucose-induced activation of pyruvate dehydrogenase in isolated rat pancreatic islets. Biochem J. 1990 Apr 15;267(2):527–530. doi: 10.1042/bj2670527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meglasson M. D., Nelson J., Nelson D., Erecinska M. Bioenergetic response of pancreatic islets to stimulation by fuel molecules. Metabolism. 1989 Dec;38(12):1188–1195. doi: 10.1016/0026-0495(89)90158-3. [DOI] [PubMed] [Google Scholar]
- Misler S., Barnett D. W., Pressel D. M., Gillis K. D., Scharp D. W., Falke L. C. Stimulus-secretion coupling in beta-cells of transplantable human islets of Langerhans. Evidence for a critical role for Ca2+ entry. Diabetes. 1992 Jun;41(6):662–670. doi: 10.2337/diab.41.6.662. [DOI] [PubMed] [Google Scholar]
- Nelson B. D., Kabir F., Muchiri P. Altered metabolic states do not change the intracellular distribution of hexokinase in Zajdela hepatoma ascites cells. Biochem J. 1984 Apr 1;219(1):159–164. doi: 10.1042/bj2190159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newgard C. B., McGarry J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995;64:689–719. doi: 10.1146/annurev.bi.64.070195.003353. [DOI] [PubMed] [Google Scholar]
- Nichols C. G., Shyng S. L., Nestorowicz A., Glaser B., Clement J. P., 4th, Gonzalez G., Aguilar-Bryan L., Permutt M. A., Bryan J. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science. 1996 Jun 21;272(5269):1785–1787. doi: 10.1126/science.272.5269.1785. [DOI] [PubMed] [Google Scholar]
- Nilsson T., Arkhammar P., Rorsman P., Berggren P. O. Inhibition of glucose-stimulated insulin release by alpha 2-adrenoceptor activation is parallelled by both a repolarization and a reduction in cytoplasmic free Ca2+ concentration. J Biol Chem. 1988 Feb 5;263(4):1855–1860. [PubMed] [Google Scholar]
- Nilsson T., Schultz V., Berggren P. O., Corkey B. E., Tornheim K. Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J. 1996 Feb 15;314(Pt 1):91–94. doi: 10.1042/bj3140091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta M., Nelson D., Nelson J., Meglasson M. D., Erecińska M. Relationships between energy level and insulin secretion in isolated rat islets of Langerhans. A study at various pH values. Biochem Pharmacol. 1991 Jul 15;42(3):593–598. doi: 10.1016/0006-2952(91)90322-v. [DOI] [PubMed] [Google Scholar]
- Ohta M., Nelson J., Nelson D., Meglasson M. D., Erecińska M. Effect of Ca++ channel blockers on energy level and stimulated insulin secretion in isolated rat islets of Langerhans. J Pharmacol Exp Ther. 1993 Jan;264(1):35–40. [PubMed] [Google Scholar]
- Panten U., Zünkler B. J., Scheit S., Kirchhoff K., Lenzen S. Regulation of energy metabolism in pancreatic islets by glucose and tolbutamide. Diabetologia. 1986 Sep;29(9):648–654. doi: 10.1007/BF00869265. [DOI] [PubMed] [Google Scholar]
- Plant T. D. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol. 1988 Oct;404:731–747. doi: 10.1113/jphysiol.1988.sp017316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pralong W. F., Spät A., Wollheim C. B. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem. 1994 Nov 4;269(44):27310–27314. [PubMed] [Google Scholar]
- Roe M. W., Mertz R. J., Lancaster M. E., Worley J. F., 3rd, Dukes I. D. Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans. Am J Physiol. 1994 Jun;266(6 Pt 1):E852–E862. doi: 10.1152/ajpendo.1994.266.6.E852. [DOI] [PubMed] [Google Scholar]
- Rutter G. A., Pralong W. F., Wollheim C. B. Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1). Biochim Biophys Acta. 1992 Dec 15;1175(1):107–113. doi: 10.1016/0167-4889(92)90016-5. [DOI] [PubMed] [Google Scholar]
- Santos R. M., Rosario L. M., Nadal A., Garcia-Sancho J., Soria B., Valdeolmillos M. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 1991 May;418(4):417–422. doi: 10.1007/BF00550880. [DOI] [PubMed] [Google Scholar]
- Sener A., Malaisse W. J. Hexose metabolism in pancreatic islets. Regulation of D-[6-14C]glucose oxidation by non-nutrient secretagogues. Mol Cell Endocrinol. 1991 Apr;76(1-3):1–6. doi: 10.1016/0303-7207(91)90253-o. [DOI] [PubMed] [Google Scholar]
- Sener A., Rasschaert J., Malaisse W. J. Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function. Biochim Biophys Acta. 1990 Aug 9;1019(1):42–50. doi: 10.1016/0005-2728(90)90122-k. [DOI] [PubMed] [Google Scholar]
- Tamarit-Rodriguez J., Hellman B., Sehilin J. Metabolic characteristics of pancreatic beta-cells exposed to calcium-transporting ionophores. Biochim Biophys Acta. 1977 Jan 24;496(1):167–174. doi: 10.1016/0304-4165(77)90124-6. [DOI] [PubMed] [Google Scholar]
- Thomsen C., Jensen K. E., Astrup A., Bülow J., Henriksen O. Changes of high-energy phosphorous compounds in skeletal muscle during glucose-induced thermogenesis in man. A 31P MR spectroscopy study. Acta Physiol Scand. 1989 Nov;137(3):335–339. doi: 10.1111/j.1748-1716.1989.tb08761.x. [DOI] [PubMed] [Google Scholar]
- Tornheim K. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes. 1997 Sep;46(9):1375–1380. doi: 10.2337/diab.46.9.1375. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E., Hue L., Hers H. G. Study of the fructose 6-phosphate/fructose 1,6-bi-phosphate cycle in the liver in vivo. Biochem J. 1980 Oct 15;192(1):263–271. doi: 10.1042/bj1920263. [DOI] [PMC free article] [PubMed] [Google Scholar]