Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 15;333(Pt 2):275–283. doi: 10.1042/bj3330275

Insight into naphthoquinone metabolism: beta-glucosidase-catalysed hydrolysis of hydrojuglone beta-D-glucopyranoside.

L Duroux 1, F M Delmotte 1, J M Lancelin 1, G Kéravis 1, C Jay-Allemand 1
PMCID: PMC1219583  PMID: 9657966

Abstract

In plants, the naphthoquinone juglone is known to be involved in pathogenic defence mechanisms, but it may also take part in plant developmental processes. This naphthoquinone can accumulate in a glycosylated form, namely hydrojuglone beta-d-glucopyranoside. The structural configuration of this compound was shown to be 1, 5-dihydroxy-4-naphthalenyl-beta-d-glucopyranoside by means of MS, NMR and nuclear Overhauser effect spectroscopy analyses. A hydrojuglone beta-d-glucopyranoside beta-glucosidase (EC 3.2.1.21) was purified to homogeneity from Juglans regia L. The enzyme catalysed the release of juglone from hydrojuglone beta-d-glucopyranoside with high specificity and showed Michaelis-Menten kinetics with Km=0.62 mM and Vmax=14.5 microkat/mg of protein. This enzyme also showed a higher activity towards beta-d-fucosyl than beta-d-glucosyl bonds. The purified enzyme had an apparent Mr of 64000 by SDS/PAGE and a pI 8.9 by isoelectrofocusing PAGE. The purified enzyme was inhibited by several bivalent cations, such as Cu2+, Fe2+, Hg2+, and by d-glucono-1,5-lactone, showing non-competitive inhibition of the mixed type.

Full Text

The Full Text of this article is available as a PDF (368.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albersheim P., An J., Freshour G., Fuller M. S., Guillen R., Ham K. S., Hahn M. G., Huang J., O'Neill M., Whitcombe A. Structure and function studies of plant cell wall polysaccharides. Biochem Soc Trans. 1994 May;22(2):374–378. doi: 10.1042/bst0220374. [DOI] [PubMed] [Google Scholar]
  2. Bohmont C., Aaronson L. M., Mann K., Pardini R. S. Inhibition of mitochondrial NADH oxidase, succinoxidase, and ATPase by naturally occurring flavonoids. J Nat Prod. 1987 May-Jun;50(3):427–433. doi: 10.1021/np50051a014. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., Palme K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993 Nov 12;262(5136):1051–1054. doi: 10.1126/science.8235622. [DOI] [PubMed] [Google Scholar]
  5. CONCHIE J., LEVVY G. A. Inhibition of glycosidases by aldonolactones of corresponding configuration. Biochem J. 1957 Feb;65(2):389–395. doi: 10.1042/bj0650389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Z., Klessig D. F. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8179–8183. doi: 10.1073/pnas.88.18.8179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAGLISH C. The determination and occurrence of a hydrojuglone glucoside in the walnut. Biochem J. 1950 Oct;47(4):458–462. doi: 10.1042/bj0470458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAGLISH C. The isolation and identification of a hydrojuglone glycoside occurring in the walnut. Biochem J. 1950 Oct;47(4):452–457. doi: 10.1042/bj0470452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dale M. P., Ensley H. E., Kern K., Sastry K. A., Byers L. D. Reversible inhibitors of beta-glucosidase. Biochemistry. 1985 Jul 2;24(14):3530–3539. doi: 10.1021/bi00335a022. [DOI] [PubMed] [Google Scholar]
  10. Eksittikul T., Chulavatnatol M. Characterization of cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz). Arch Biochem Biophys. 1988 Oct;266(1):263–269. doi: 10.1016/0003-9861(88)90257-3. [DOI] [PubMed] [Google Scholar]
  11. Esen A. Purification and Partial Characterization of Maize (Zea mays L.) beta-Glucosidase. Plant Physiol. 1992 Jan;98(1):174–182. doi: 10.1104/pp.98.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Falk A., Rask L. Expression of a zeatin-O-glucoside-degrading beta-glucosidase in Brassica napus. Plant Physiol. 1995 Aug;108(4):1369–1377. doi: 10.1104/pp.108.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giordani R., Noat G. Isolation, molecular properties and kinetic studies of a strict beta-fucosidase from Lactuca sativa latex. Its possible role in the cell-wall degradation of articulated laticifers. Eur J Biochem. 1988 Aug 15;175(3):619–625. doi: 10.1111/j.1432-1033.1988.tb14237.x. [DOI] [PubMed] [Google Scholar]
  14. Gus-Mayer S., Brunner H., Schneider-Poetsch H. A., Rüdiger W. Avenacosidase from oat: purification, sequence analysis and biochemical characterization of a new member of the BGA family of beta-glucosidases. Plant Mol Biol. 1994 Nov;26(3):909–921. doi: 10.1007/BF00028858. [DOI] [PubMed] [Google Scholar]
  15. Hemscheidt T., Zenk M. H. Glucosidases involved in indole alkaloid biosynthesis of Catharanthus cell cultures. FEBS Lett. 1980 Feb 11;110(2):187–191. doi: 10.1016/0014-5793(80)80069-x. [DOI] [PubMed] [Google Scholar]
  16. Inoue K., Ebizuka Y. Purification and characterization of furostanol glycoside 26-O-beta-glucosidase from Costus speciosus rhizomes. FEBS Lett. 1996 Jan 8;378(2):157–160. doi: 10.1016/0014-5793(95)01447-0. [DOI] [PubMed] [Google Scholar]
  17. Itoh-Nashida T., Hiraiwa M., Uda Y. Purification and properties of beta-D-glucosidase (linamarase) from the butter bean, Phaseolus lunatus. J Biochem. 1987 Apr;101(4):847–854. doi: 10.1093/oxfordjournals.jbchem.a121951. [DOI] [PubMed] [Google Scholar]
  18. Klessig D. F., Malamy J. The salicylic acid signal in plants. Plant Mol Biol. 1994 Dec;26(5):1439–1458. doi: 10.1007/BF00016484. [DOI] [PubMed] [Google Scholar]
  19. LEABACK D. H., WALKER P. G. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. Biochem J. 1961 Jan;78:151–156. doi: 10.1042/bj0780151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Leah R., Kigel J., Svendsen I., Mundy J. Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem. 1995 Jun 30;270(26):15789–15797. doi: 10.1074/jbc.270.26.15789. [DOI] [PubMed] [Google Scholar]
  22. Leinhos V., Udagama-Randeniya P. V., Savidge R. A. Purification of an acidic coniferin-hydrolysing beta-glucosidase from developing xylem of Pinus banksiana. Phytochemistry. 1994 Sep;37(2):311–315. doi: 10.1016/0031-9422(94)85053-4. [DOI] [PubMed] [Google Scholar]
  23. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  24. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  25. Segura-Aguilar J., Hakman I., Rydström J. The Effect of 5OH-1,4-Naphthoquinone on Norway Spruce Seeds during Germination. Plant Physiol. 1992 Dec;100(4):1955–1961. doi: 10.1104/pp.100.4.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Srisomsap C., Svasti J., Surarit R., Champattanachai V., Sawangareetrakul P., Boonpuan K., Subhasitanont P., Chokchaichamnankit D. Isolation and characterization of an enzyme with beta-glucosidase and beta-fucosidase activities from Dalbergia cochinchinensis Pierre. J Biochem. 1996 Mar;119(3):585–590. doi: 10.1093/oxfordjournals.jbchem.a021282. [DOI] [PubMed] [Google Scholar]
  27. Varga Z., Bene L., Pieri C., Damjanovich S., Gáspár R., Jr The effect of juglone on the membrane potential and whole-cell K+ currents of human lymphocytes. Biochem Biophys Res Commun. 1996 Jan 26;218(3):828–832. doi: 10.1006/bbrc.1996.0147. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES