Abstract
Photoaffinity labelling of brush border membrane vesicles from rabbit ileum with radiolabelled 3,3-azo and 7,7-azo derivatives of taurocholate identified integral membrane proteins of molecular masses 93 and 46 kDa, as well as a 14 kDa peripheral membrane protein, as components of the ileal Na+/bile acid transport system [Kramer, Girbig, Gutjahr, Kowalewski, Jouvenal, Müller, Tripier and Wess (1993) J. Biol. Chem. 268, 18035-18046]. Differential photoaffinity labelling in the presence of non-radiolabelled bile acid derivatives led, as expected, to a concentration-dependent decrease in the extent of labelling of the 93 and 46 kDa transmembrane proteins, which are the monomeric and dimeric forms of the ileal bile acid transporter protein. The extent of labelling of the 14 kDa ileal lipid-binding protein (ILBP), however, increased on the addition of unlabelled bile acids, the increase being dependent on the structure of the bile acid added. The possibility of artifacts was excluded by photoaffinity labelling experiments in the frozen state as well as by model calculations. The experimental results suggest that the binding of bile acids to ILBP can increase the affinity of ILBP for bile acids. These results would be in accordance with a substrate-load modification of transport activity and a positive-feedback regulation mechanism for active uptake of bile acid in the ileum.
Full Text
The Full Text of this article is available as a PDF (498.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayley H., Knowles J. R. Photoaffinity labeling. Methods Enzymol. 1977;46:69–114. doi: 10.1016/s0076-6879(77)46012-9. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chowdhry V., Westheimer F. H. Photoaffinity labeling of biological systems. Annu Rev Biochem. 1979;48:293–325. doi: 10.1146/annurev.bi.48.070179.001453. [DOI] [PubMed] [Google Scholar]
- Dumaswala R., Berkowitz D., Heubi J. E. Adaptive response of the enterohepatic circulation of bile acids to extrahepatic cholestasis. Hepatology. 1996 Mar;23(3):623–629. doi: 10.1002/hep.510230330. [DOI] [PubMed] [Google Scholar]
- Gong Y. Z., Everett E. T., Schwartz D. A., Norris J. S., Wilson F. A. Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4741–4745. doi: 10.1073/pnas.91.11.4741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins J. V., Paul J. M., Dumaswala R., Heubi J. E. Downregulation of taurocholate transport by ileal BBM and liver BLM in biliary-diverted rats. Am J Physiol. 1994 Oct;267(4 Pt 1):G501–G507. doi: 10.1152/ajpgi.1994.267.4.G501. [DOI] [PubMed] [Google Scholar]
- Karasov W. H., Solberg D. H., Diamond J. M. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels. Am J Physiol. 1987 May;252(5 Pt 1):G614–G625. doi: 10.1152/ajpgi.1987.252.5.G614. [DOI] [PubMed] [Google Scholar]
- Kramer W., Burckhardt G., Wilson F. A., Kurz G. Bile salt-binding polypeptides in brush-border membrane vesicles from rat small intestine revealed by photoaffinity labeling. J Biol Chem. 1983 Mar 25;258(6):3623–3627. [PubMed] [Google Scholar]
- Kramer W., Girbig F., Gutjahr U., Kowalewski S., Jouvenal K., Müller G., Tripier D., Wess G. Intestinal bile acid absorption. Na(+)-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein along the duodenum-ileum axis. J Biol Chem. 1993 Aug 25;268(24):18035–18046. [PubMed] [Google Scholar]
- Kramer W., Girbig F., Gutjahr U., Kowalewski S. Radiation-inactivation analysis of the Na+/bile acid co-transport system from rabbit ileum. Biochem J. 1995 Feb 15;306(Pt 1):241–246. doi: 10.1042/bj3060241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer W., Girbig F., Gutjahr U., Leipe I. Application of high-performance liquid chromatography to the purification of the putative intestinal peptide transporter. J Chromatogr. 1990 Nov 23;521(2):199–210. doi: 10.1016/0021-9673(90)85044-v. [DOI] [PubMed] [Google Scholar]
- Kramer W., Kurz G. Photolabile derivatives of bile salts. Synthesis and suitability for photoaffinity labeling. J Lipid Res. 1983 Jul;24(7):910–923. [PubMed] [Google Scholar]
- Kramer W., Nicol S. B., Girbig F., Gutjahr U., Kowalewski S., Fasold H. Characterization and chemical modification of the Na(+)-dependent bile-acid transport system in brush-border membrane vesicles from rabbit ileum. Biochim Biophys Acta. 1992 Oct 19;1111(1):93–102. doi: 10.1016/0005-2736(92)90278-t. [DOI] [PubMed] [Google Scholar]
- Kramer W., Schneider S. 3-Diazirine-derivatives of bile salts for photoaffinity labeling. J Lipid Res. 1989 Aug;30(8):1281–1288. [PubMed] [Google Scholar]
- Kramer W., Wess G., Bewersdorf U., Corsiero D., Girbig F., Weyland C., Stengelin S., Enhsen A., Bock K., Kleine H. Topological photoaffinity labeling of the rabbit ileal Na+/bile-salt-cotransport system. Eur J Biochem. 1997 Oct 15;249(2):456–464. doi: 10.1111/j.1432-1033.1997.00456.x. [DOI] [PubMed] [Google Scholar]
- Lack L. Properties and biological significance of the ileal bile salt transport system. Environ Health Perspect. 1979 Dec;33:79–89. doi: 10.1289/ehp.793379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lillienau J., Crombie D. L., Munoz J., Longmire-Cook S. J., Hagey L. R., Hofmann A. F. Negative feedback regulation of the ileal bile acid transport system in rodents. Gastroenterology. 1993 Jan;104(1):38–46. doi: 10.1016/0016-5085(93)90833-x. [DOI] [PubMed] [Google Scholar]
- Lin M. C., Kramer W., Wilson F. A. Identification of cytosolic and microsomal bile acid-binding proteins in rat ileal enterocytes. J Biol Chem. 1990 Sep 5;265(25):14986–14995. [PubMed] [Google Scholar]
- Nellans H. N., Kimberg D. V. Cellular and paracellular calcium transport in rat ileum: effects of dietary calcium. Am J Physiol. 1978 Dec;235(6):E726–E737. doi: 10.1152/ajpendo.1978.235.6.E726. [DOI] [PubMed] [Google Scholar]
- Oelkers P., Dawson P. A. Cloning and chromosomal localization of the human ileal lipid-binding protein. Biochim Biophys Acta. 1995 Jul 13;1257(2):199–202. doi: 10.1016/0005-2760(95)00098-w. [DOI] [PubMed] [Google Scholar]
- Shneider B. L., Dawson P. A., Christie D. M., Hardikar W., Wong M. H., Suchy F. J. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest. 1995 Feb;95(2):745–754. doi: 10.1172/JCI117722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solberg D. H., Diamond J. M. Comparison of different dietary sugars as inducers of intestinal sugar transporters. Am J Physiol. 1987 Apr;252(4 Pt 1):G574–G584. doi: 10.1152/ajpgi.1987.252.4.G574. [DOI] [PubMed] [Google Scholar]
- Stengelin S., Apel S., Becker W., Maier M., Rosenberger J., Bewersdorf U., Girbig F., Weyland C., Wess G., Kramer W. The rabbit ileal lipid-binding protein. Gene cloning and functional expression of the recombinant protein. Eur J Biochem. 1996 Aug 1;239(3):887–896. doi: 10.1111/j.1432-1033.1996.0887u.x. [DOI] [PubMed] [Google Scholar]
- WHEBY M. S., JONES L. G., CROSBY W. H. STUDIES ON IRON ABSORPTION. INTESTINAL REGULATORY MECHANISMS. J Clin Invest. 1964 Jul;43:1433–1442. doi: 10.1172/JCI105019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wess G., Kramer W., Enhsen A., Glombik H., Baringhaus K. H., Böger G., Urmann M., Bock K., Kleine H., Neckermann G. Specific inhibitors of ileal bile acid transport. J Med Chem. 1994 Apr 1;37(7):873–875. doi: 10.1021/jm00033a001. [DOI] [PubMed] [Google Scholar]
- Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
- Wong M. H., Oelkers P., Craddock A. L., Dawson P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994 Jan 14;269(2):1340–1347. [PubMed] [Google Scholar]
- Wong M. H., Oelkers P., Dawson P. A. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem. 1995 Nov 10;270(45):27228–27234. doi: 10.1074/jbc.270.45.27228. [DOI] [PubMed] [Google Scholar]