Abstract
P-Glycoprotein, the plasma membrane protein responsible for the multidrug resistance of some tumour cells, is an active transporter of a number of structurally unrelated hydrophobic drugs. We have characterized the modulation of its ATPase activity by a multidrug-resistance-related cytotoxic drug, vinblastine, and different multidrug-resistance-reversing agents, verapamil and the dihydropyridines nicardipine, nimodipine, nitrendipine, nifedipine and azidopine. P-Glycoprotein ATPase activity was measured by using native membrane vesicles containing large amounts of P-glycoprotein, prepared from the highly multidrug-resistant lung fibroblasts DC-3F/ADX. P-Glycoprotein ATPase is activated by verapamil and by nicardipine but not by vinblastine. Among the five dihydropyridines tested, the higher the hydrophobicity, the higher was the activation factor with respect to the basal activity and the lower was the half-maximal activating concentration. The vinblastine-specific binding on P-glycoprotein is reported by the inhibitions of the verapamil- and the nicardipine-stimulated ATPase. These inhibitions are purely competitive, which means that the bindings of vinblastine and verapamil, or vinblastine and nicardipine, on P-glycoprotein are mutually exclusive. In contrast, verapamil and nicardipine display mutually non-competitive interactions. This demonstrates the existence of two distinct specific sites for these two P-glycoprotein modulators on which they can bind simultaneously and separately to the vinblastine site. The nicardipine-stimulated ATPase activity in the presence of the other dihydropyridines shows mixed-type inhibitions. These dihydropyridines have thus different binding sites that interact mutually to decrease their respective, separately determined affinities. This could be due to steric constraints between sites close to each other. This is supported by the observation that vinblastine binding is not mutually exclusive with nifedipine or nitrendipine binding, whereas it is mutually exclusive with nicardipine. Moreover, verapamil binding also interacts with the five dihydropyridines by mixed inhibitions, with different destabilization factors. On the whole our enzymic data show that P-glycoprotein has distinct but interacting binding sites for various modulators of its ATPase function.
Full Text
The Full Text of this article is available as a PDF (531.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayesh S., Shao Y. M., Stein W. D. Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein. Biochim Biophys Acta. 1996 May 24;1316(1):8–18. doi: 10.1016/0925-4439(96)00008-7. [DOI] [PubMed] [Google Scholar]
- Beck W. T., Qian X. D. Photoaffinity substrates for P-glycoprotein. Biochem Pharmacol. 1992 Jan 9;43(1):89–93. doi: 10.1016/0006-2952(92)90665-6. [DOI] [PubMed] [Google Scholar]
- Biedler J. L., Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970 Apr;30(4):1174–1184. [PubMed] [Google Scholar]
- Boer R., Dichtl M., Borchers C., Ulrich W. R., Marecek J. F., Prestwich G. D., Glossmann H., Striessnig J. Reversible labeling of a chemosensitizer binding domain of p-glycoprotein with a novel 1,4-dihydropyridine drug transport inhibitor. Biochemistry. 1996 Feb 6;35(5):1387–1396. doi: 10.1021/bi951912u. [DOI] [PubMed] [Google Scholar]
- Boer R., Ulrich W. R., Haas S., Borchers C., Gekeler V., Boss H., Przybylski M., Schödl A. Interaction of cytostatics and chemosensitizers with the dexniguldipine binding site on P-glycoprotein. Eur J Pharmacol. 1996 Jan 11;295(2-3):253–260. doi: 10.1016/0014-2999(95)00649-4. [DOI] [PubMed] [Google Scholar]
- Borgnia M. J., Eytan G. D., Assaraf Y. G. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996 Feb 9;271(6):3163–3171. doi: 10.1074/jbc.271.6.3163. [DOI] [PubMed] [Google Scholar]
- Devine S. E., Ling V., Melera P. W. Amino acid substitutions in the sixth transmembrane domain of P-glycoprotein alter multidrug resistance. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4564–4568. doi: 10.1073/pnas.89.10.4564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doige C. A., Yu X., Sharom F. J. ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta. 1992 Aug 24;1109(2):149–160. doi: 10.1016/0005-2736(92)90078-z. [DOI] [PubMed] [Google Scholar]
- Ferry D. R., Russell M. A., Cullen M. H. P-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is alloserically coupled to a vinca-alkaloid-selective binding site. Biochem Biophys Res Commun. 1992 Oct 15;188(1):440–445. doi: 10.1016/0006-291x(92)92404-l. [DOI] [PubMed] [Google Scholar]
- Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
- Garrigos M., Belehradek J., Jr, Mir L. M., Orlowski S. Absence of cooperativity for MgATP and verapamil effects on the ATPase activity of P-glycoprotein containing membrane vesicles. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1034–1041. doi: 10.1006/bbrc.1993.2355. [DOI] [PubMed] [Google Scholar]
- Garrigos M., Mir L. M., Orlowski S. Competitive and non-competitive inhibition of the multidrug-resistance-associated P-glycoprotein ATPase--further experimental evidence for a multisite model. Eur J Biochem. 1997 Mar 1;244(2):664–673. doi: 10.1111/j.1432-1033.1997.00664.x. [DOI] [PubMed] [Google Scholar]
- Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
- Hofmann J., Wolf A., Spitaler M., Böck G., Drach J., Ludescher C., Grunicke H. Reversal of multidrug resistance by B859-35, a metabolite of B859-35, niguldipine, verapamil and nitrendipine. J Cancer Res Clin Oncol. 1992;118(5):361–366. doi: 10.1007/BF01294440. [DOI] [PubMed] [Google Scholar]
- Holmes J. A., West R. R. The effect of MDR-1 gene expression on outcome in acute myeloblastic leukaemia. Br J Cancer. 1994 Feb;69(2):382–384. doi: 10.1038/bjc.1994.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homolya L., Holló Z., Germann U. A., Pastan I., Gottesman M. M., Sarkadi B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem. 1993 Oct 15;268(29):21493–21496. [PubMed] [Google Scholar]
- Horio M., Lovelace E., Pastan I., Gottesman M. M. Agents which reverse multidrug-resistance are inhibitors of [3H]vinblastine transport by isolated vesicles. Biochim Biophys Acta. 1991 Jan 9;1061(1):106–110. doi: 10.1016/0005-2736(91)90274-c. [DOI] [PubMed] [Google Scholar]
- Hunter J., Jepson M. A., Tsuruo T., Simmons N. L., Hirst B. H. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J Biol Chem. 1993 Jul 15;268(20):14991–14997. [PubMed] [Google Scholar]
- Lehnert M., Dalton W. S., Roe D., Emerson S., Salmon S. E. Synergistic inhibition by verapamil and quinine of P-glycoprotein-mediated multidrug resistance in a human myeloma cell line model. Blood. 1991 Jan 15;77(2):348–354. [PubMed] [Google Scholar]
- Liu R., Sharom F. J. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Biochemistry. 1996 Sep 10;35(36):11865–11873. doi: 10.1021/bi960823u. [DOI] [PubMed] [Google Scholar]
- Naito M., Tsuruo T. Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res. 1989 Mar 15;49(6):1452–1455. [PubMed] [Google Scholar]
- Orlowski S., Mir L. M., Belehradek J., Jr, Garrigos M. Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochem J. 1996 Jul 15;317(Pt 2):515–522. doi: 10.1042/bj3170515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osann K., Sweet P., Slater L. M. Synergistic interaction of cyclosporin A and verapamil on vincristine and daunorubicin resistance in multidrug-resistant human leukemia cells in vitro. Cancer Chemother Pharmacol. 1992;30(2):152–154. doi: 10.1007/BF00686409. [DOI] [PubMed] [Google Scholar]
- Pereira E., Borrel M. N., Fiallo M., Garnier-Suillerot A. Non-competitive inhibition of P-glycoprotein-associated efflux of THP-adriamycin by verapamil in living K562 leukemia cells. Biochim Biophys Acta. 1994 Jan 11;1225(2):209–216. doi: 10.1016/0925-4439(94)90080-9. [DOI] [PubMed] [Google Scholar]
- Rao U. S. Mutation of glycine 185 to valine alters the ATPase function of the human P-glycoprotein expressed in Sf9 cells. J Biol Chem. 1995 Mar 24;270(12):6686–6690. [PubMed] [Google Scholar]
- Rao U. S., Scarborough G. A. Direct demonstration of high affinity interactions of immunosuppressant drugs with the drug binding site of the human P-glycoprotein. Mol Pharmacol. 1994 Apr;45(4):773–776. [PubMed] [Google Scholar]
- Raviv Y., Pollard H. B., Bruggemann E. P., Pastan I., Gottesman M. M. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem. 1990 Mar 5;265(7):3975–3980. [PubMed] [Google Scholar]
- Rosenberg M. F., Callaghan R., Ford R. C., Higgins C. F. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem. 1997 Apr 18;272(16):10685–10694. doi: 10.1074/jbc.272.16.10685. [DOI] [PubMed] [Google Scholar]
- Safa A. R., Glover C. J., Sewell J. L., Meyers M. B., Biedler J. L., Felsted R. L. Identification of the multidrug resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J Biol Chem. 1987 Jun 5;262(16):7884–7888. [PubMed] [Google Scholar]
- Safa A. R., Stern R. K., Choi K., Agresti M., Tamai I., Mehta N. D., Roninson I. B. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185----Val-185 substitution in P-glycoprotein. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7225–7229. doi: 10.1073/pnas.87.18.7225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schinkel A. H., Kemp S., Dollé M., Rudenko G., Wagenaar E. N-glycosylation and deletion mutants of the human MDR1 P-glycoprotein. J Biol Chem. 1993 Apr 5;268(10):7474–7481. [PubMed] [Google Scholar]
- Shapiro A. B., Ling V. ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells. J Biol Chem. 1994 Feb 4;269(5):3745–3754. [PubMed] [Google Scholar]
- Sharom F. J., Yu X., Chu J. W., Doige C. A. Characterization of the ATPase activity of P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochem J. 1995 Jun 1;308(Pt 2):381–390. doi: 10.1042/bj3080381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonveaux N., Shapiro A. B., Goormaghtigh E., Ling V., Ruysschaert J. M. Secondary and tertiary structure changes of reconstituted P-glycoprotein. A Fourier transform attenuated total reflection infrared spectroscopy analysis. J Biol Chem. 1996 Oct 4;271(40):24617–24624. doi: 10.1074/jbc.271.40.24617. [DOI] [PubMed] [Google Scholar]
- Stein W. D., Cardarelli C., Pastan I., Gottesman M. M. Kinetic evidence suggesting that the multidrug transporter differentially handles influx and efflux of its substrates. Mol Pharmacol. 1994 Apr;45(4):763–772. [PubMed] [Google Scholar]
- Tamai I., Safa A. R. Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem. 1991 Sep 5;266(25):16796–16800. [PubMed] [Google Scholar]
- Tamai I., Safa A. R. Competitive interaction of cyclosporins with the Vinca alkaloid-binding site of P-glycoprotein in multidrug-resistant cells. J Biol Chem. 1990 Sep 25;265(27):16509–16513. [PubMed] [Google Scholar]
- Tsuruo T., Iida H., Nojiri M., Tsukagoshi S., Sakurai Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 1983 Jun;43(6):2905–2910. [PubMed] [Google Scholar]
- Urbatsch I. L., Senior A. E. Effects of lipids on ATPase activity of purified Chinese hamster P-glycoprotein. Arch Biochem Biophys. 1995 Jan 10;316(1):135–140. doi: 10.1006/abbi.1995.1020. [DOI] [PubMed] [Google Scholar]
- Urbatsch I. L., al-Shawi M. K., Senior A. E. Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein. Biochemistry. 1994 Jun 14;33(23):7069–7076. doi: 10.1021/bi00189a008. [DOI] [PubMed] [Google Scholar]
- Welker E., Szabó K., Holló Z., Müller M., Sarkadi B., Váradi A. Drug-stimulated ATPase activity of a deletion mutant of the human multidrug-resistance protein (MDR1). Biochem Biophys Res Commun. 1995 Nov 13;216(2):602–609. doi: 10.1006/bbrc.1995.2665. [DOI] [PubMed] [Google Scholar]
- Yusa K., Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 1989 Sep 15;49(18):5002–5006. [PubMed] [Google Scholar]