Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 15;333(Pt 2):381–388. doi: 10.1042/bj3330381

Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714.

A Disch 1, J Schwender 1, C Müller 1, H K Lichtenthaler 1, M Rohmer 1
PMCID: PMC1219596  PMID: 9657979

Abstract

Isopentenyl diphosphate, the universal isoprenoid precursor, can be produced by two different biosynthetic routes: either via the acetate/mevalonate (MVA) pathway, or via the more recently identified MVA-independent glyceraldehyde phosphate/pyruvate pathway. These two pathways are easily differentiated by incorporation of [1-13C]glucose and analysis of the resulting labelling patterns found in the isoprenoids. This method was successfully applied to several unicellular algae raised under heterotrophic growth conditions and allowed for the identification of the pathways that were utilized for isoprenoid biosynthesis. All isoprenoids examined (sterols, phytol, carotenoids) of the green algae Chlorella fusca and Chlamydomonas reinhardtii were synthesized via the GAP/pyruvate pathway, as in another previously investigated green alga, Scenedesmus obliquus, which was also shown in this study to synthesize ubiquinone by the same MVA-independent route. In the red alga Cyanidium caldarium and in the Chrysophyte Ochromonas danica a clear dichotomy was observed: as in higher plants, sterols were formed via the MVA route, whereas chloroplast isoprenoids (phytol in Cy. caldarium and O. danica and beta-carotene in O. danica) were synthesized via the GAP/pyruvate route. In contrast, the Euglenophyte Euglena gracilis synthesized ergosterol, as well as phytol, via the acetate/MVA route. Similar feeding experiments were performed with the cyanobacterium Synechocystis PCC 6714 using [1-13C]- and [6-13C]-glucose. The two isoprenoids examined, phytol and beta-carotene, were shown to have the typical labelling pattern derived from the GAP/pyruvate route.

Full Text

The Full Text of this article is available as a PDF (338.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anding C., Brandt R. D., Ourisson G. Sterol biosynthesis in Euglena gracilis Z. Sterol precursors in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem. 1971 Dec;24(2):259–263. doi: 10.1111/j.1432-1033.1971.tb19679.x. [DOI] [PubMed] [Google Scholar]
  2. Anding C., Ourisson G. Presence of ergosterol in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem. 1973 Apr;34(2):345–346. doi: 10.1111/j.1432-1033.1973.tb02765.x. [DOI] [PubMed] [Google Scholar]
  3. Arigoni D., Sagner S., Latzel C., Eisenreich W., Bacher A., Zenk M. H. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10600–10605. doi: 10.1073/pnas.94.20.10600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banthorpe D. V., Charlwood B. V., Francis M. J. The biosynthesis of monoterpenes. Sogo Kango. 1972 Apr;72(2):115–155. [PubMed] [Google Scholar]
  5. Beale S. I., Chen N. C. N-Methyl Mesoporphyrin IX Inhibits Phycocyanin, but Not Chlorophyll Synthesis in Cyanidium caldarium. Plant Physiol. 1983 Feb;71(2):263–268. doi: 10.1104/pp.71.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Disch A., Hemmerlin A., Bach T. J., Rohmer M. Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J. 1998 Apr 15;331(Pt 2):615–621. doi: 10.1042/bj3310615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisenreich W., Menhard B., Hylands P. J., Zenk M. H., Bacher A. Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6431–6436. doi: 10.1073/pnas.93.13.6431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flesch G., Rohmer M. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem. 1988 Aug 1;175(2):405–411. doi: 10.1111/j.1432-1033.1988.tb14210.x. [DOI] [PubMed] [Google Scholar]
  9. Gershengorn M. C., Smith A. R., Goulston G., Goad L. J., Goodwin T. W., Haines T. H. The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry. 1968 May;7(5):1698–1706. doi: 10.1021/bi00845a012. [DOI] [PubMed] [Google Scholar]
  10. Gibbs S. P. The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci. 1981;361:193–208. doi: 10.1111/j.1749-6632.1981.tb46519.x. [DOI] [PubMed] [Google Scholar]
  11. Inagaki Y., Hayashi-Ishimaru Y., Ehara M., Igarashi I., Ohama T. Algae or protozoa: phylogenetic position of euglenophytes and dinoflagellates as inferred from mitochondrial sequences. J Mol Evol. 1997 Sep;45(3):295–300. doi: 10.1007/pl00006233. [DOI] [PubMed] [Google Scholar]
  12. Knöss W., Reuter B., Zapp J. Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via a non-mevalonate pathway. Biochem J. 1997 Sep 1;326(Pt 2):449–454. doi: 10.1042/bj3260449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lichtenthaler H. K., Schwender J., Disch A., Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997 Jan 6;400(3):271–274. doi: 10.1016/s0014-5793(96)01404-4. [DOI] [PubMed] [Google Scholar]
  14. Lois L. M., Campos N., Putra S. R., Danielsen K., Rohmer M., Boronat A. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2105–2110. doi: 10.1073/pnas.95.5.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mandel M. A., Feldmann K. A., Herrera-Estrella L., Rocha-Sosa M., León P. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 1996 May;9(5):649–658. doi: 10.1046/j.1365-313x.1996.9050649.x. [DOI] [PubMed] [Google Scholar]
  16. Raederstorff D., Rohmer M. Sterol biosynthesis de nova via cycloartenol by the soil amoeba Acanthamoeba polyphaga. Biochem J. 1985 Nov 1;231(3):609–615. doi: 10.1042/bj2310609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Raederstorff D., Rohmer M. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi. Eur J Biochem. 1987 Apr 15;164(2):427–434. doi: 10.1111/j.1432-1033.1987.tb11075.x. [DOI] [PubMed] [Google Scholar]
  18. Rohmer M., Brandt R. D. Les stèrols et leurs prècurseurs chez Astasia longa Pringsheim. Eur J Biochem. 1973 Jul 16;36(2):446–454. doi: 10.1111/j.1432-1033.1973.tb02929.x. [DOI] [PubMed] [Google Scholar]
  19. Rohmer M., Knani M., Simonin P., Sutter B., Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993 Oct 15;295(Pt 2):517–524. doi: 10.1042/bj2950517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwender J., Seemann M., Lichtenthaler H. K., Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J. 1996 May 15;316(Pt 1):73–80. doi: 10.1042/bj3160073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwender J., Zeidler J., Gröner R., Müller C., Focke M., Braun S., Lichtenthaler F. W., Lichtenthaler H. K. Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett. 1997 Sep 1;414(1):129–134. doi: 10.1016/s0014-5793(97)01002-8. [DOI] [PubMed] [Google Scholar]
  22. Sprenger G. A., Schörken U., Wiegert T., Grolle S., de Graaf A. A., Taylor S. V., Begley T. P., Bringer-Meyer S., Sahm H. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12857–12862. doi: 10.1073/pnas.94.24.12857. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES