Abstract
Chymase is responsible for the formation of angiotensin II, which plays crucial roles in the pathogenesis of cardiovascular diseases. In the present study we determined the gene organization of a novel hamster chymase (hamster chymase 2) and analysed the expression of chymase 1, chymase 2 and angiotensin-converting enzyme (ACE) in hamster hearts at the terminal stage of cardiomyopathy. The gene encoding hamster chymase 2 is 3.2 kb in length and has five exons and four intervening sequences. The overall organization of this gene is similar to that of several other serine proteases. The deduced amino acid sequence revealed the existence of a preproenzyme composed of a signal peptide with 19 amino acids, a propeptide with two amino acids and a catalytic domain with 226 amino acids. The predicted full sequence of the catalytic domain was revealed to be very similar to the sequences of mouse mast-cell protease 5 (86%), rat mast-cell protease III (85%) and human chymase (70%) and less similar to hamster chymase 1 (56%). The expression of chymase 1 in heart was higher than that of chymase 2. The cardiac chymase-like activity, as well as the mRNA levels of chymase 1 and 2 of BIO 14.6 cardiomyopathic hamsters at the age of 60 weeks were increased 3.4-, 2.8- and 5.1-fold respectively compared with age-matched BIO F1B control hamsters. The cardiac ACE activity and the ACE mRNA level of cardiomyopathic hamsters were also increased 4.1- and 2.4-fold compared with those of age-matched controls. These results suggest that up-regulation of both ACE and chymases participates in the pathophysiology of the terminal stage of cardiomyopathy.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banovac K., De Forteza R. The effect of mast cell chymase on extracellular matrix: studies in autoimmune thyroiditis and in cultured thyroid cells. Int Arch Allergy Immunol. 1992;99(1):141–149. doi: 10.1159/000236348. [DOI] [PubMed] [Google Scholar]
- Benfey P. N., Yin F. H., Leder P. Cloning of the mast cell protease, RMCP II. Evidence for cell-specific expression and a multi-gene family. J Biol Chem. 1987 Apr 15;262(11):5377–5384. [PubMed] [Google Scholar]
- Boulet A. M., Erwin C. R., Rutter W. J. Cell-specific enhancers in the rat exocrine pancreas. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3599–3603. doi: 10.1073/pnas.83.11.3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caughey G. H., Blount J. L., Koerber K. L., Kitamura M., Fang K. C. Cloning and expression of the dog mast cell alpha-chymase gene. J Immunol. 1997 Nov 1;159(9):4367–4375. [PubMed] [Google Scholar]
- Caughey G. H., Leidig F., Viro N. F., Nadel J. A. Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J Pharmacol Exp Ther. 1988 Jan;244(1):133–137. [PubMed] [Google Scholar]
- Caughey G. H., Raymond W. W., Vanderslice P. Dog mast cell chymase: molecular cloning and characterization. Biochemistry. 1990 May 29;29(21):5166–5171. doi: 10.1021/bi00473a024. [DOI] [PubMed] [Google Scholar]
- Caughey G. H., Schaumberg T. H., Zerweck E. H., Butterfield J. H., Hanson R. D., Silverman G. A., Ley T. J. The human mast cell chymase gene (CMA1): mapping to the cathepsin G/granzyme gene cluster and lineage-restricted expression. Genomics. 1993 Mar;15(3):614–620. doi: 10.1006/geno.1993.1115. [DOI] [PubMed] [Google Scholar]
- Caughey G. H., Zerweck E. H., Vanderslice P. Structure, chromosomal assignment, and deduced amino acid sequence of a human gene for mast cell chymase. J Biol Chem. 1991 Jul 15;266(20):12956–12963. [PubMed] [Google Scholar]
- Chan I. J., Tharp M. D. Rat mast cell protease I alters cell metabolism. J Invest Dermatol. 1994 Jul;103(1):84–87. doi: 10.1111/1523-1747.ep12391797. [DOI] [PubMed] [Google Scholar]
- Chandrasekharan U. M., Sanker S., Glynias M. J., Karnik S. S., Husain A. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science. 1996 Jan 26;271(5248):502–505. doi: 10.1126/science.271.5248.502. [DOI] [PubMed] [Google Scholar]
- Gershenfeld H. K., Hershberger R. J., Shows T. B., Weissman I. L. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1184–1188. doi: 10.1073/pnas.85.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ide H., Itoh H., Tomita M., Murakumo Y., Kobayashi T., Maruyama H., Osada Y., Nawa Y. Cloning of the cDNA encoding a novel rat mast-cell proteinase, rMCP-3, and its expression in comparison with other rat mast-cell proteinases. Biochem J. 1995 Oct 15;311(Pt 2):675–680. doi: 10.1042/bj3110675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh H., Murakumo Y., Tomita M., Ide H., Kobayashi T., Maruyama H., Horii Y., Nawa Y. Cloning of the cDNAs for mast-cell chymases from the jejunum of Mongolian gerbils, Meriones unguiculatus, and their sequence similarities with chymases expressed in the connective-tissue mast cells of mice and rats. Biochem J. 1996 Mar 15;314(Pt 3):923–929. doi: 10.1042/bj3140923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Trong H., Neurath H., Woodbury R. G. Substrate specificity of the chymotrypsin-like protease in secretory granules isolated from rat mast cells. Proc Natl Acad Sci U S A. 1987 Jan;84(2):364–367. doi: 10.1073/pnas.84.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Trong H., Parmelee D. C., Walsh K. A., Neurath H., Woodbury R. G. Amino acid sequence of rat mast cell protease I (chymase). Biochemistry. 1987 Nov 3;26(22):6988–6994. doi: 10.1021/bi00396a020. [DOI] [PubMed] [Google Scholar]
- Liao Y., Yi T., Hoit B. D., Walsh R. A., Karnik S. S., Husain A. Selective reporter expression in mast cells using a chymase promoter. J Biol Chem. 1997 Jan 31;272(5):2969–2976. doi: 10.1074/jbc.272.5.2969. [DOI] [PubMed] [Google Scholar]
- Longley B. J., Tyrrell L., Ma Y., Williams D. A., Halaban R., Langley K., Lu H. S., Schechter N. M. Chymase cleavage of stem cell factor yields a bioactive, soluble product. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9017–9021. doi: 10.1073/pnas.94.17.9017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lützelschwab C., Pejler G., Aveskogh M., Hellman L. Secretory granule proteases in rat mast cells. Cloning of 10 different serine proteases and a carboxypeptidase A from various rat mast cell populations. J Exp Med. 1997 Jan 6;185(1):13–29. doi: 10.1084/jem.185.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuire M. J., Lipsky P. E., Thiele D. L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem. 1993 Feb 5;268(4):2458–2467. [PubMed] [Google Scholar]
- McNeil H. P., Austen K. F., Somerville L. L., Gurish M. F., Stevens R. L. Molecular cloning of the mouse mast cell protease-5 gene. A novel secretory granule protease expressed early in the differentiation of serosal mast cells. J Biol Chem. 1991 Oct 25;266(30):20316–20322. [PubMed] [Google Scholar]
- Mizutani H., Schechter N., Lazarus G., Black R. A., Kupper T. S. Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. J Exp Med. 1991 Oct 1;174(4):821–825. doi: 10.1084/jem.174.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamura T., Okunishi H., Ayajiki K., Toda N. Conversion of angiotensin I to angiotensin II in dog isolated renal artery: role of two different angiotensin II-generating enzymes. J Cardiovasc Pharmacol. 1990 Mar;15(3):353–359. doi: 10.1097/00005344-199003000-00002. [DOI] [PubMed] [Google Scholar]
- Okunishi H., Miyazaki M., Okamura T., Toda N. Different distribution of two types of angiotensin II-generating enzymes in the aortic wall. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1186–1192. doi: 10.1016/0006-291x(87)90533-x. [DOI] [PubMed] [Google Scholar]
- Okunishi H., Miyazaki M., Toda N. Evidence for a putatively new angiotensin II-generating enzyme in the vascular wall. J Hypertens. 1984 Jun;2(3):277–284. [PubMed] [Google Scholar]
- Okunishi H., Oka Y., Shiota N., Kawamoto T., Song K., Miyazaki M. Marked species-difference in the vascular angiotensin II-forming pathways: humans versus rodents. Jpn J Pharmacol. 1993 Jun;62(2):207–210. doi: 10.1254/jjp.62.207. [DOI] [PubMed] [Google Scholar]
- Paananen K., Kovanen P. T. Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. J Biol Chem. 1994 Jan 21;269(3):2023–2031. [PubMed] [Google Scholar]
- Pitt B., Segal R., Martinez F. A., Meurers G., Cowley A. J., Thomas I., Deedwania P. C., Ney D. E., Snavely D. B., Chang P. I. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE) Lancet. 1997 Mar 15;349(9054):747–752. doi: 10.1016/s0140-6736(97)01187-2. [DOI] [PubMed] [Google Scholar]
- Reilly C. F., Tewksbury D. A., Schechter N. M., Travis J. Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases. J Biol Chem. 1982 Aug 10;257(15):8619–8622. [PubMed] [Google Scholar]
- Rubinstein I., Gao X. P., Engel J. A., Vishwanatha J. K. Tissue angiotensin I-converting enzyme activity in aging hamsters with and without cardiomyopathy. Mech Ageing Dev. 1995 Mar 1;78(2):163–170. doi: 10.1016/0047-6374(94)01534-s. [DOI] [PubMed] [Google Scholar]
- Saarinen J., Kalkkinen N., Welgus H. G., Kovanen P. T. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J Biol Chem. 1994 Jul 8;269(27):18134–18140. [PubMed] [Google Scholar]
- Sanker S., Chandrasekharan U. M., Wilk D., Glynias M. J., Karnik S. S., Husain A. Distinct multisite synergistic interactions determine substrate specificities of human chymase and rat chymase-1 for angiotensin II formation and degradation. J Biol Chem. 1997 Jan 31;272(5):2963–2968. doi: 10.1074/jbc.272.5.2963. [DOI] [PubMed] [Google Scholar]
- Sarid J., Benfey P. N., Leder P. The mast cell-specific expression of a protease gene, RMCP II, is regulated by an enhancer element that binds specifically to mast cell trans-acting factors. J Biol Chem. 1989 Jan 15;264(2):1022–1026. [PubMed] [Google Scholar]
- Serafin W. E., Reynolds D. S., Rogelj S., Lane W. S., Conder G. A., Johnson S. S., Austen K. F., Stevens R. L. Identification and molecular cloning of a novel mouse mucosal mast cell serine protease. J Biol Chem. 1990 Jan 5;265(1):423–429. [PubMed] [Google Scholar]
- Serafin W. E., Sullivan T. P., Conder G. A., Ebrahimi A., Marcham P., Johnson S. S., Austen K. F., Reynolds D. S. Cloning of the cDNA and gene for mouse mast cell protease 4. Demonstration of its late transcription in mast cell subclasses and analysis of its homology to subclass-specific neutral proteases of the mouse and rat. J Biol Chem. 1991 Jan 25;266(3):1934–1941. [PubMed] [Google Scholar]
- Shiota N., Fukamizu A., Takai S., Okunishi H., Murakami K., Miyazaki M. Activation of angiotensin II-forming chymase in the cardiomyopathic hamster heart. J Hypertens. 1997 Apr;15(4):431–440. doi: 10.1097/00004872-199715040-00014. [DOI] [PubMed] [Google Scholar]
- Shiota N., Jin D., Takai S., Kawamura T., Koyama M., Nakamura N., Miyazaki M. Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension. FEBS Lett. 1997 Apr 14;406(3):301–304. doi: 10.1016/s0014-5793(97)00295-0. [DOI] [PubMed] [Google Scholar]
- Shiota N., Miyazaki M., Okunishi H. Increase of angiotensin converting enzyme gene expression in the hypertensive aorta. Hypertension. 1992 Aug;20(2):168–174. doi: 10.1161/01.hyp.20.2.168. [DOI] [PubMed] [Google Scholar]
- Shiota N., Okunishi H., Fukamizu A., Sakonjo H., Kikumori M., Nishimura T., Nakagawa T., Murakami K., Miyazaki M. Activation of two angiotensin-generating systems in the balloon-injured artery. FEBS Lett. 1993 Jun 1;323(3):239–242. doi: 10.1016/0014-5793(93)81348-4. [DOI] [PubMed] [Google Scholar]
- Studer R., Reinecke H., Müller B., Holtz J., Just H., Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest. 1994 Jul;94(1):301–310. doi: 10.1172/JCI117322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takai S., Shiota N., Kobayashi S., Matsumura E., Miyazaki M. Induction of chymase that forms angiotensin II in the monkey atherosclerotic aorta. FEBS Lett. 1997 Jul 21;412(1):86–90. doi: 10.1016/s0014-5793(97)00752-7. [DOI] [PubMed] [Google Scholar]
- Takai S., Shiota N., Yamamoto D., Okunishi H., Miyazaki M. Purification and characterization of angiotensin II-generating chymase from hamster cheek pouch. Life Sci. 1996;58(7):591–597. doi: 10.1016/0024-3205(95)02328-3. [DOI] [PubMed] [Google Scholar]
- Trong H. L., Newlands G. F., Miller H. R., Charbonneau H., Neurath H., Woodbury R. G. Amino acid sequence of a mouse mucosal mast cell protease. Biochemistry. 1989 Jan 10;28(1):391–395. doi: 10.1021/bi00427a054. [DOI] [PubMed] [Google Scholar]
- Urata H., Boehm K. D., Philip A., Kinoshita A., Gabrovsek J., Bumpus F. M., Husain A. Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J Clin Invest. 1993 Apr;91(4):1269–1281. doi: 10.1172/JCI116325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urata H., Kinoshita A., Misono K. S., Bumpus F. M., Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990 Dec 25;265(36):22348–22357. [PubMed] [Google Scholar]
- Urata H., Kinoshita A., Perez D. M., Misono K. S., Bumpus F. M., Graham R. M., Husain A. Cloning of the gene and cDNA for human heart chymase. J Biol Chem. 1991 Sep 15;266(26):17173–17179. [PubMed] [Google Scholar]
- Vartio T., Seppä H., Vaheri A. Susceptibility of soluble and matrix fibronectins to degradation by tissue proteinases, mast cell chymase and cathepsin G. J Biol Chem. 1981 Jan 10;256(1):471–477. [PubMed] [Google Scholar]
- Wolny A., Clozel J. P., Rein J., Mory P., Vogt P., Turino M., Kiowski W., Fischli W. Functional and biochemical analysis of angiotensin II-forming pathways in the human heart. Circ Res. 1997 Feb;80(2):219–227. doi: 10.1161/01.res.80.2.219. [DOI] [PubMed] [Google Scholar]
- Wypij D. M., Nichols J. S., Novak P. J., Stacy D. L., Berman J., Wiseman J. S. Role of mast cell chymase in the extracellular processing of big-endothelin-1 to endothelin-1 in the perfused rat lung. Biochem Pharmacol. 1992 Feb 18;43(4):845–853. doi: 10.1016/0006-2952(92)90252-e. [DOI] [PubMed] [Google Scholar]
- Zon L. I., Gurish M. F., Stevens R. L., Mather C., Reynolds D. S., Austen K. F., Orkin S. H. GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. J Biol Chem. 1991 Dec 5;266(34):22948–22953. [PubMed] [Google Scholar]