Abstract
Two TaqI endonuclease (hereafter referred to as TaqI) isoschizomer genes, tsp32IR from Thermus species SM32 of Azores and tfiTok6A1I from T. filiformis Tok6A1 of New Zealand, were cloned in Escherichia coli. The overexpressed enzymes were partly purified and their thermostability was determined. In the medium-salt buffer, Tsp32IR, TfiTok6A1I and one previously cloned TaqI isoschizomer (TthHB8I) were more thermostable than TaqI. Tsp32IR remained partly active up to 90 degreesC in the low-salt buffer. Six amino acid residues that are identical in the three high thermostability isoschizomers (Tsp32IR, TfiTok6A1I and TthHB8I) but differ in TaqI might provide added rigidity for thermostabilization. These include four proline residues located in or near loop regions, and one alanine and one arginine located at helix regions in the predicted TaqI endonuclease secondary structure. The possible role of these residues in thermostabilization was evaluated by mutagenizing the TaqI enzyme. Mutants generated at these six positions were less thermostable than wild-type TaqI. The results suggest that the surrounding sequence or structural context might be as important as the mutation itself.
Full Text
The Full Text of this article is available as a PDF (772.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argos P., Rossman M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. doi: 10.1021/bi00592a028. [DOI] [PubMed] [Google Scholar]
- Barany F. A genetic system for isolation and characterization of TaqI restriction endonuclease mutants. Gene. 1987;56(1):13–27. doi: 10.1016/0378-1119(87)90154-5. [DOI] [PubMed] [Google Scholar]
- Barany F., Danzitz M., Zebala J., Mayer A. Cloning and sequencing of genes encoding the TthHB8I restriction and modification enzymes: comparison with the isoschizomeric TaqI enzymes. Gene. 1992 Mar 1;112(1):3–12. doi: 10.1016/0378-1119(92)90296-2. [DOI] [PubMed] [Google Scholar]
- Barany F. Overproduction, purification and crystallization of TaqI restriction endonuclease. Gene. 1988 May 30;65(2):167–177. doi: 10.1016/0378-1119(88)90453-2. [DOI] [PubMed] [Google Scholar]
- Barany F., Slatko B., Danzitz M., Cowburn D., Schildkraut I., Wilson G. G. The corrected nucleotide sequences of the TaqI restriction and modification enzymes reveal a thirteen-codon overlap. Gene. 1992 Mar 1;112(1):91–95. doi: 10.1016/0378-1119(92)90307-b. [DOI] [PubMed] [Google Scholar]
- Brock T. D., Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969 Apr;98(1):289–297. doi: 10.1128/jb.98.1.289-297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böhm G., Jaenicke R. Relevance of sequence statistics for the properties of extremophilic proteins. Int J Pept Protein Res. 1994 Jan;43(1):97–106. doi: 10.1111/j.1399-3011.1994.tb00380.x. [DOI] [PubMed] [Google Scholar]
- Cao W., Lu J., Barany F. Nucleotide sequences and gene organization of TaqI endonuclease isoschizomers from Thermus sp. SM32 and Thermus filiformis Tok6A1. Gene. 1997 Sep 15;197(1-2):205–214. doi: 10.1016/s0378-1119(97)00264-3. [DOI] [PubMed] [Google Scholar]
- Cao W., Mayer A. N., Barany F. Stringent and relaxed specificities of TaqI endonuclease: interactions with metal cofactors and DNA sequences. Biochemistry. 1995 Feb 21;34(7):2276–2283. doi: 10.1021/bi00007a023. [DOI] [PubMed] [Google Scholar]
- Chakrabartty A., Baldwin R. L. Stability of alpha-helices. Adv Protein Chem. 1995;46:141–176. [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Jaenicke R., Schurig H., Beaucamp N., Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv Protein Chem. 1996;48:181–269. doi: 10.1016/s0065-3233(08)60363-0. [DOI] [PubMed] [Google Scholar]
- Kimura S., Nakamura H., Hashimoto T., Oobatake M., Kanaya S. Stabilization of Escherichia coli ribonuclease HI by strategic replacement of amino acid residues with those from the thermophilic counterpart. J Biol Chem. 1992 Oct 25;267(30):21535–21542. [PubMed] [Google Scholar]
- Korndörfer I., Steipe B., Huber R., Tomschy A., Jaenicke R. The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. J Mol Biol. 1995 Mar 3;246(4):511–521. doi: 10.1006/jmbi.1994.0103. [DOI] [PubMed] [Google Scholar]
- Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
- Merkler D. J., Farrington G. K., Wedler F. C. Protein thermostability. Correlations between calculated macroscopic parameters and growth temperature for closely related thermophilic and mesophilic bacilli. Int J Pept Protein Res. 1981 Nov;18(5):430–442. [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman M., Strzelecka T., Dorner L. F., Schildkraut I., Aggarwal A. K. Structure of Bam HI endonuclease bound to DNA: partial folding and unfolding on DNA binding. Science. 1995 Aug 4;269(5224):656–663. doi: 10.1126/science.7624794. [DOI] [PubMed] [Google Scholar]
- Ohage E. C., Graml W., Walter M. M., Steinbacher S., Steipe B. Beta-turn propensities as paradigms for the analysis of structural motifs to engineer protein stability. Protein Sci. 1997 Jan;6(1):233–241. doi: 10.1002/pro.5560060125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramaley R. F., Hixson J. Isolation of a nonpigmented, thermophilic bacterium similar to Thermophilic bacterium similar to Thermus aquaticus. J Bacteriol. 1970 Aug;103(2):527–528. doi: 10.1128/jb.103.2.527-528.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
- Serrano L., Neira J. L., Sancho J., Fersht A. R. Effect of alanine versus glycine in alpha-helices on protein stability. Nature. 1992 Apr 2;356(6368):453–455. doi: 10.1038/356453a0. [DOI] [PubMed] [Google Scholar]
- Singleton R., Jr, Middaugh C. R., MacElroy R. D. Comparison of proteins from thermophilic and nonthermophilic sources in terms of structural parameters inferred from amino acid composition. Int J Pept Protein Res. 1977;10(1):39–50. doi: 10.1111/j.1399-3011.1977.tb02774.x. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Chishiro K., Kitamura K., Suzuki Y. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006. J Biol Chem. 1991 Dec 25;266(36):24287–24294. [PubMed] [Google Scholar]
- Watanabe K., Kitamura K., Suzuki Y. Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues. Appl Environ Microbiol. 1996 Jun;62(6):2066–2073. doi: 10.1128/aem.62.6.2066-2073.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe K., Masuda T., Ohashi H., Mihara H., Suzuki Y. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. Eur J Biochem. 1994 Dec 1;226(2):277–283. doi: 10.1111/j.1432-1033.1994.tb20051.x. [DOI] [PubMed] [Google Scholar]
- Welch S. G., Williams R. A. Two different isoschizomers of the type-II restriction endonuclease Taq I (T/CGA) within the same Thermus isolate: Tsp32 I, an enzyme with similar heat stability properties to the prototype enzyme Taq I, and Tsp32 II, a hyperthermostable isoschizomer of Taq I. Biochem J. 1995 Dec 1;312(Pt 2):505–510. doi: 10.1042/bj3120505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler F. K., Banner D. W., Oefner C., Tsernoglou D., Brown R. S., Heathman S. P., Bryan R. K., Martin P. D., Petratos K., Wilson K. S. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993 May;12(5):1781–1795. doi: 10.2210/pdb4rve/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
