Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jul 15;333(Pt 2):395–400. doi: 10.1042/bj3330395

Kinetic analysis of an inhibitor-resistant variant of the OHIO-1 beta-lactamase, an SHV-family class A enzyme.

S Lin 1, M Thomas 1, D M Shlaes 1, S D Rudin 1, J R Knox 1, V Anderson 1, R A Bonomo 1
PMCID: PMC1219605  PMID: 9735103

Abstract

The Met69-->Ile mutant of the OHIO-1 beta-lactamase, an SHV-family enzyme, is resistant to inactivation by beta-lactamase inhibitors. Analysis of purified Met69-->Ile enzyme reveals that its isoelectric point (pI 7.0) and CD spectrum are identical with those of the OHIO-1 enzyme. Levels of beta-lactamase expression in Escherichia coli as determined by immunoblotting are similar for OHIO-1 and Met69-->Ile beta-lactamase. The kinetic constants of the Met69-->Ile enzyme compared with OHIO-1 are smaller for benzylpenicillin (Km = 6 microM compared with 17 microM; kcat = 234 s-1 compared with 345 s-1 respectively) and carbenicillin (Km = 3 microM compared with 17 microM; kcat = 131 s-1 compared with 320 s-1 respectively). For the cephalosporins cephaloridine and 7-(thienyl- 2-acetamido)-3-[2-(4-N,N- dimethylaminophenylazo)pyridinium-methyl]-3-cephem-4-carboxylic acid (PADAC), a similar pattern is also seen (Km=38 microM compared with 96 microM and 6 microM compared with 75 microM respectively; kcat = 235 s-1 compared with 1023 s-1 and 9 s-1 compared with 50 s-1 respectively). Consistent with minimum inhibitory concentrations that show resistance to beta-lactam beta-lactamase inhibitors, the apparent Ki values, turnover numbers and partition ratios (kcat/kinact) for the mechanism-based inactivators clavulanate, sulbactam and tazobactam are increased. The inactivation rate constants (kinact) are decreased. The difference in activation energy, a measurement of altered affinity for the wild-type and mutant enzymes leading to acylation of the active site, reveals small energy differences of less than 8.4 kJ/mol. In total, these results suggest that the Met-->Ile substitution at position 69 in the OHIO-1 beta-lactamase alters the active site, primarily affecting the interactions with beta-lactamase inhibitors.

Full Text

The Full Text of this article is available as a PDF (313.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P., Coulson A. F., Frère J. M., Ghuysen J. M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991 May 15;276(Pt 1):269–270. doi: 10.1042/bj2760269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambler R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
  3. Bonomo R. A., Currie-McCumber C., Shlaes D. M. OHIO-1 beta-lactamase resistant to mechanism-based inactivators. FEMS Microbiol Lett. 1992 Apr 1;71(1):79–82. doi: 10.1016/0378-1097(92)90545-y. [DOI] [PubMed] [Google Scholar]
  4. Bonomo R. A., Dawes C. G., Knox J. R., Shlaes D. M. Complementary roles of mutations at positions 69 and 242 in a class A beta-lactamase. Biochim Biophys Acta. 1995 Feb 22;1247(1):113–120. doi: 10.1016/0167-4838(94)00187-l. [DOI] [PubMed] [Google Scholar]
  5. Bonomo R. A., Dawes C. G., Knox J. R., Shlaes D. M. beta-Lactamase mutations far from the active site influence inhibitor binding. Biochim Biophys Acta. 1995 Feb 22;1247(1):121–125. doi: 10.1016/0167-4838(94)00188-m. [DOI] [PubMed] [Google Scholar]
  6. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bush K., Macalintal C., Rasmussen B. A., Lee V. J., Yang Y. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob Agents Chemother. 1993 Apr;37(4):851–858. doi: 10.1128/aac.37.4.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chaibi E. B., Péduzzi J., Farzaneh S., Barthélémy M., Sirot D., Labia R. Clinical inhibitor-resistant mutants of the beta-lactamase TEM-1 at amino-acid position 69. Kinetic analysis and molecular modelling. Biochim Biophys Acta. 1998 Jan 15;1382(1):38–46. doi: 10.1016/s0167-4838(97)00127-1. [DOI] [PubMed] [Google Scholar]
  9. Delaire M., Labia R., Samama J. P., Masson J. M. Site-directed mutagenesis at the active site of Escherichia coli TEM-1 beta-lactamase. Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. J Biol Chem. 1992 Oct 15;267(29):20600–20606. [PubMed] [Google Scholar]
  10. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  11. Farzaneh S., Chaibi E. B., Peduzzi J., Barthelemy M., Labia R., Blazquez J., Baquero F. Implication of Ile-69 and Thr-182 residues in kinetic characteristics of IRT-3 (TEM-32) beta-lactamase. Antimicrob Agents Chemother. 1996 Oct;40(10):2434–2436. doi: 10.1128/aac.40.10.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giakkoupi P., Tzelepi E., Legakis N. J., Tzouvelekis L. S. Substitution of Arg-244 by Cys or Ser in SHV-1 and SHV-5 beta-lactamases confers resistance to mechanism-based inhibitors and reduces catalytic efficiency of the enzymes. FEMS Microbiol Lett. 1998 Mar 1;160(1):49–54. doi: 10.1111/j.1574-6968.1998.tb12889.x. [DOI] [PubMed] [Google Scholar]
  13. Imtiaz U., Billings E. M., Knox J. R., Mobashery S. A structure-based analysis of the inhibition of class A beta-lactamases by sulbactam. Biochemistry. 1994 May 17;33(19):5728–5738. doi: 10.1021/bi00185a009. [DOI] [PubMed] [Google Scholar]
  14. Johnson B. H., Hecht M. H. Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology (N Y) 1994 Dec;12(13):1357–1360. doi: 10.1038/nbt1294-1357. [DOI] [PubMed] [Google Scholar]
  15. Joris B., Ghuysen J. M., Dive G., Renard A., Dideberg O., Charlier P., Frère J. M., Kelly J. A., Boyington J. C., Moews P. C. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J. 1988 Mar 1;250(2):313–324. doi: 10.1042/bj2500313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knox J. R. Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother. 1995 Dec;39(12):2593–2601. doi: 10.1128/aac.39.12.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Medeiros A. A. Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis. 1997 Jan;24 (Suppl 1):S19–S45. doi: 10.1093/clinids/24.supplement_1.s19. [DOI] [PubMed] [Google Scholar]
  18. Petrosino J. F., Palzkill T. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. J Bacteriol. 1996 Apr;178(7):1821–1828. doi: 10.1128/jb.178.7.1821-1828.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prinarakis E. E., Miriagou V., Tzelepi E., Gazouli M., Tzouvelekis L. S. Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant. Antimicrob Agents Chemother. 1997 Apr;41(4):838–840. doi: 10.1128/aac.41.4.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saves I., Burlet-Schiltz O., Maveyraud L., Samama J. P., Promé J. C., Masson J. M. Mass spectral kinetic study of acylation and deacylation during the hydrolysis of penicillins and cefotaxime by beta-lactamase TEM-1 and the G238S mutant. Biochemistry. 1995 Sep 19;34(37):11660–11667. doi: 10.1021/bi00037a003. [DOI] [PubMed] [Google Scholar]
  21. Vecoli C., Prevost F. E., Ververis J. J., Medeiros A. A., O'Leary G. P., Jr Comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamases. Antimicrob Agents Chemother. 1983 Aug;24(2):186–189. doi: 10.1128/aac.24.2.186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES