Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 1;333(Pt 3):519–525. doi: 10.1042/bj3330519

Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque.

S Fu 1, M J Davies 1, R Stocker 1, R T Dean 1
PMCID: PMC1219612  PMID: 9677308

Abstract

Oxidative damage might be important in atherogenesis. Oxidized lipids are present at significant concentrations in advanced human plaque, although tissue antioxidants are mostly present at normal concentrations. Indirect evidence of protein modification (notably derivatization of lysine) or oxidation has been obtained by immunochemical methods; the specificities of these antibodies are unclear. Here we present chemical determinations of six protein-bound oxidation products: dopa, o-tyrosine, m-tyrosine, dityrosine, hydroxyleucine and hydroxyvaline, some of which reflect particularly oxy-radical-mediated reaction pathways, which seem to involve mainly the participation of transition- metal ions. We compared the relative abundance of these oxidation products in normal intima, and in human carotid plaque samples with that observed after radiolytically generated hydroxyl radical attack on BSA in vitro. The close similarities in relative abundances in the latter two circumstances indicate that hydroxyl radical damage might occur in plaque. The relatively higher level of dityrosine in plaque than that observed after radiolysis suggests the additional involvement of HOCl-mediated reactions in advanced plaque.

Full Text

The Full Text of this article is available as a PDF (328.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
  2. Blount B. C., Duncan M. W. Trace quantification of the oxidative damage products, meta- and ortho-tyrosine, in biological samples by gas chromatography-electron capture negative ionization mass spectrometry. Anal Biochem. 1997 Jan 15;244(2):270–276. doi: 10.1006/abio.1996.9900. [DOI] [PubMed] [Google Scholar]
  3. Bolton E. J., Jessup W., Stanley K. K., Dean R. T. Enhanced LDL oxidation by murine macrophage foam cells and their failure to secrete nitric oxide. Atherosclerosis. 1994 Apr;106(2):213–223. doi: 10.1016/0021-9150(94)90126-0. [DOI] [PubMed] [Google Scholar]
  4. Brown A. J., Dean R. T., Jessup W. Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages. J Lipid Res. 1996 Feb;37(2):320–335. [PubMed] [Google Scholar]
  5. Daugherty A., Dunn J. L., Rateri D. L., Heinecke J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994 Jul;94(1):437–444. doi: 10.1172/JCI117342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies M. J., Fu S., Dean R. T. Protein hydroperoxides can give rise to reactive free radicals. Biochem J. 1995 Jan 15;305(Pt 2):643–649. doi: 10.1042/bj3050643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dean R. T., Fu S., Stocker R., Davies M. J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997 May 15;324(Pt 1):1–18. doi: 10.1042/bj3240001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dean R. T., Gebicki J., Gieseg S., Grant A. J., Simpson J. A. Hypothesis: a damaging role in aging for reactive protein oxidation products? Mutat Res. 1992 Sep;275(3-6):387–393. doi: 10.1016/0921-8734(92)90041-m. [DOI] [PubMed] [Google Scholar]
  9. Dean R. T., Gieseg S., Davies M. J. Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci. 1993 Nov;18(11):437–441. doi: 10.1016/0968-0004(93)90145-d. [DOI] [PubMed] [Google Scholar]
  10. Dempsey J. A. Sleep apnea causes daytime hypertension. J Clin Invest. 1997 Jan 1;99(1):1–2. doi: 10.1172/JCI119119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans P., Kaur H., Mitchinson M. J., Halliwell B. Do human atherosclerotic lesions contain nitrotyrosine? Biochem Biophys Res Commun. 1996 Sep 13;226(2):346–351. doi: 10.1006/bbrc.1996.1359. [DOI] [PubMed] [Google Scholar]
  12. Fu S. L., Dean R. T. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem J. 1997 May 15;324(Pt 1):41–48. doi: 10.1042/bj3240041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fu S., Gebicki S., Jessup W., Gebicki J. M., Dean R. T. Biological fate of amino acid, peptide and protein hydroperoxides. Biochem J. 1995 Nov 1;311(Pt 3):821–827. doi: 10.1042/bj3110821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fu S., Hick L. A., Sheil M. M., Dean R. T. Structural identification of valine hydroperoxides and hydroxides on radical-damaged amino acid, peptide, and protein molecules. Free Radic Biol Med. 1995 Sep;19(3):281–292. doi: 10.1016/0891-5849(95)00021-o. [DOI] [PubMed] [Google Scholar]
  15. Gelissen I. C., Brown A. J., Mander E. L., Kritharides L., Dean R. T., Jessup W. Sterol efflux is impaired from macrophage foam cells selectively enriched with 7-ketocholesterol. J Biol Chem. 1996 Jul 26;271(30):17852–17860. doi: 10.1074/jbc.271.30.17852. [DOI] [PubMed] [Google Scholar]
  16. Gieseg S. P., Simpson J. A., Charlton T. S., Duncan M. W., Dean R. T. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry. 1993 May 11;32(18):4780–4786. doi: 10.1021/bi00069a012. [DOI] [PubMed] [Google Scholar]
  17. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  18. Hazell L. J., Arnold L., Flowers D., Waeg G., Malle E., Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 1996 Mar 15;97(6):1535–1544. doi: 10.1172/JCI118576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heinecke J. W., Li W., Daehnke H. L., 3rd, Goldstein J. A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem. 1993 Feb 25;268(6):4069–4077. [PubMed] [Google Scholar]
  20. Heinecke J. W., Li W., Francis G. A., Goldstein J. A. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest. 1993 Jun;91(6):2866–2872. doi: 10.1172/JCI116531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jessup W., Dean R. T., de Whalley C. V., Rankin S. M., Leake D. S. The role of oxidative modification and antioxidants in LDL metabolism and atherosclerosis. Adv Exp Med Biol. 1990;264:139–142. doi: 10.1007/978-1-4684-5730-8_20. [DOI] [PubMed] [Google Scholar]
  22. Jessup W., Jurgens G., Lang J., Esterbauer H., Dean R. T. Interaction of 4-hydroxynonenal-modified low-density lipoproteins with the fibroblast apolipoprotein B/E receptor. Biochem J. 1986 Feb 15;234(1):245–248. doi: 10.1042/bj2340245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kettle A. J. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett. 1996 Jan 22;379(1):103–106. doi: 10.1016/0014-5793(95)01494-2. [DOI] [PubMed] [Google Scholar]
  24. Leeuwenburgh C., Hardy M. M., Hazen S. L., Wagner P., Oh-ishi S., Steinbrecher U. P., Heinecke J. W. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem. 1997 Jan 17;272(3):1433–1436. doi: 10.1074/jbc.272.3.1433. [DOI] [PubMed] [Google Scholar]
  25. Leeuwenburgh C., Rasmussen J. E., Hsu F. F., Mueller D. M., Pennathur S., Heinecke J. W. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997 Feb 7;272(6):3520–3526. doi: 10.1074/jbc.272.6.3520. [DOI] [PubMed] [Google Scholar]
  26. Morin B., Davies M. J., Dean R. T. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage. Biochem J. 1998 Mar 15;330(Pt 3):1059–1067. doi: 10.1042/bj3301059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neuzil J., Gebicki J. M., Stocker R. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J. 1993 Aug 1;293(Pt 3):601–606. doi: 10.1042/bj2930601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neuzil J., Thomas S. R., Stocker R. Requirement for, promotion, or inhibition by alpha-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Radic Biol Med. 1997;22(1-2):57–71. doi: 10.1016/s0891-5849(96)00224-9. [DOI] [PubMed] [Google Scholar]
  29. Parhami F., Fang Z. T., Fogelman A. M., Andalibi A., Territo M. C., Berliner J. A. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest. 1993 Jul;92(1):471–478. doi: 10.1172/JCI116590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rajavashisth T. B., Yamada H., Mishra N. K. Transcriptional activation of the macrophage-colony stimulating factor gene by minimally modified LDL. Involvement of nuclear factor-kappa B. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1591–1598. doi: 10.1161/01.atv.15.10.1591. [DOI] [PubMed] [Google Scholar]
  31. Raper H. S. Note on the oxidation of tyrosine, tyramine and phenylalanine with hydrogen peroxide. Biochem J. 1932;26(6):2000–2004. doi: 10.1042/bj0262000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simpson J. A., Narita S., Gieseg S., Gebicki S., Gebicki J. M., Dean R. T. Long-lived reactive species on free-radical-damaged proteins. Biochem J. 1992 Mar 15;282(Pt 3):621–624. doi: 10.1042/bj2820621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Soszynski M., Filipiak A., Bartosz G., Gebicki J. M. Effect of amino acid peroxides on the erythrocyte. Free Radic Biol Med. 1996;20(1):45–51. doi: 10.1016/0891-5849(95)02015-2. [DOI] [PubMed] [Google Scholar]
  34. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  35. Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steinbrecher U. P., Zhang H. F., Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 1990;9(2):155–168. doi: 10.1016/0891-5849(90)90119-4. [DOI] [PubMed] [Google Scholar]
  37. Suarna C., Dean R. T., May J., Stocker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1616–1624. doi: 10.1161/01.atv.15.10.1616. [DOI] [PubMed] [Google Scholar]
  38. Thomas S. R., Neuzil J., Mohr D., Stocker R. Coantioxidants make alpha-tocopherol an efficient antioxidant for low-density lipoprotein. Am J Clin Nutr. 1995 Dec;62(6 Suppl):1357S–1364S. doi: 10.1093/ajcn/62.6.1357S. [DOI] [PubMed] [Google Scholar]
  39. Thorpe S. R., Baynes J. W. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996 Aug;9(2):69–77. doi: 10.2165/00002512-199609020-00001. [DOI] [PubMed] [Google Scholar]
  40. Van Reyk D. M., Brown A. J., Jessup W., Dean R. T. Batch-to-batch variation of Chelex-100 confounds metal-catalysed oxidation. Leaching of inhibitory compounds from a batch of Chelex-100 and their removal by a pre-washing procedure. Free Radic Res. 1995 Dec;23(6):533–535. doi: 10.3109/10715769509065274. [DOI] [PubMed] [Google Scholar]
  41. Wells-Knecht M. C., Huggins T. G., Dyer D. G., Thorpe S. R., Baynes J. W. Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. J Biol Chem. 1993 Jun 15;268(17):12348–12352. [PubMed] [Google Scholar]
  42. Wolff S. P., Dean R. T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J. 1986 Mar 1;234(2):399–403. doi: 10.1042/bj2340399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ylä-Herttuala S., Luoma J., Viita H., Hiltunen T., Sisto T., Nikkari T. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995 Jun;95(6):2692–2698. doi: 10.1172/JCI117971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES