Abstract
We have investigated the cell cycle inhibition mechanism and primary target of tryprostatin A (TPS-A) purified from Aspergillus fumigatus. TPS-A inhibited cell cycle progression of asynchronously cultured 3Y1 cells in the M phase in a dose- and time-dependent manner. In contrast, TPS-B (the demethoxy analogue of TPS-A) showed cell-cycle non-specific inhibition on cell growth even though it inhibited cell growth at lower concentrations than TPS-A. TPS-A treatment induced the reversible disruption of the cytoplasmic microtubules of 3Y1 cells as observed by indirect immunofluorescence microscopy in the range of concentrations that specifically inhibited M-phase progression. TPS-A inhibited the assembly in vitro of microtubules purified from bovine brains (40% inhibition at 250 microM); however, there was little or no effect on the self-assembly of purified tubulin when polymerization was induced by glutamate even at 250 microM TPS-A. TPS-A did not inhibit assembly promoted by taxol or by digestion of the C-terminal domain of tubulin. However, TPS-A blocked the tubulin assembly induced by inducers interacting with the C-terminal domain, microtubule-associated protein 2 (MAP2), tau and poly-(l-lysine). These results indicate that TPS-A is a novel inhibitor of MAP-dependent microtubule assembly and, through the disruption of the microtubule spindle, specifically inhibits cell cycle progression at the M phase.
Full Text
The Full Text of this article is available as a PDF (369.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe K., Yoshida M., Usui T., Horinouchi S., Beppu T. Highly synchronous culture of fibroblasts from G2 block caused by staurosporine, a potent inhibitor of protein kinases. Exp Cell Res. 1991 Jan;192(1):122–127. doi: 10.1016/0014-4827(91)90166-r. [DOI] [PubMed] [Google Scholar]
- Bai R. L., Paull K. D., Herald C. L., Malspeis L., Pettit G. R., Hamel E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem. 1991 Aug 25;266(24):15882–15889. [PubMed] [Google Scholar]
- Bai R., Pei X. F., Boyé O., Getahun Z., Grover S., Bekisz J., Nguyen N. Y., Brossi A., Hamel E. Identification of cysteine 354 of beta-tubulin as part of the binding site for the A ring of colchicine. J Biol Chem. 1996 May 24;271(21):12639–12645. doi: 10.1074/jbc.271.21.12639. [DOI] [PubMed] [Google Scholar]
- Bai R., Schwartz R. E., Kepler J. A., Pettit G. R., Hamel E. Characterization of the interaction of cryptophycin 1 with tubulin: binding in the Vinca domain, competitive inhibition of dolastatin 10 binding, and an unusual aggregation reaction. Cancer Res. 1996 Oct 1;56(19):4398–4406. [PubMed] [Google Scholar]
- Basusarkar P., Chandra S., Bhattacharyya B. The colchicine-binding and pyrene-excimer-formation activities of tubulin involve a common cysteine residue in the beta subunit. Eur J Biochem. 1997 Mar 1;244(2):378–383. doi: 10.1111/j.1432-1033.1997.00378.x. [DOI] [PubMed] [Google Scholar]
- Bergen L. G., Borisy G. G. Tubulin-colchicine complex inhibits microtubule elongation at both plus and minus ends. J Biol Chem. 1983 Apr 10;258(7):4190–4194. [PubMed] [Google Scholar]
- Bhattacharyya B., Sackett D. L., Wolff J. Tubulin, hybrid dimers, and tubulin S. Stepwise charge reduction and polymerization. J Biol Chem. 1985 Aug 25;260(18):10208–10216. [PubMed] [Google Scholar]
- Bhattacharyya B., Wolff J. Maytansine binding to the vinblastine sites of tubulin. FEBS Lett. 1977 Mar 15;75(1):159–162. doi: 10.1016/0014-5793(77)80075-6. [DOI] [PubMed] [Google Scholar]
- Correia J. J. Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127–147. doi: 10.1016/0163-7258(91)90004-6. [DOI] [PubMed] [Google Scholar]
- Cui C. B., Kakeya H., Okada G., Onose R., Osada H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 1996 Jun;49(6):527–533. doi: 10.7164/antibiotics.49.527. [DOI] [PubMed] [Google Scholar]
- Cui C. B., Kakeya H., Okada G., Onose R., Ubukata M., Takahashi I., Isono K., Osada H. Tryprostatins A and B, novel mammalian cell cycle inhibitors produced by Aspergillus fumigatus. J Antibiot (Tokyo) 1995 Nov;48(11):1382–1384. doi: 10.7164/antibiotics.48.1382. [DOI] [PubMed] [Google Scholar]
- Cui C. B., Kakeya H., Osada H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. II. Physico-chemical properties and structures. J Antibiot (Tokyo) 1996 Jun;49(6):534–540. doi: 10.7164/antibiotics.49.534. [DOI] [PubMed] [Google Scholar]
- Dahllöf B., Billström A., Cabral F., Hartley-Asp B. Estramustine depolymerizes microtubules by binding to tubulin. Cancer Res. 1993 Oct 1;53(19):4573–4581. [PubMed] [Google Scholar]
- Fridén B., Wallin M., Deinum J., Prasad V., Luduena R. Effect of estramustine phosphate on the assembly of trypsin-treated microtubules and microtubules reconstituted from purified tubulin with either tau, MAP2, or the tubulin-binding fragment of MAP2. Arch Biochem Biophys. 1987 Aug 15;257(1):123–130. doi: 10.1016/0003-9861(87)90550-9. [DOI] [PubMed] [Google Scholar]
- Goode B. L., Denis P. E., Panda D., Radeke M. J., Miller H. P., Wilson L., Feinstein S. C. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol Biol Cell. 1997 Feb;8(2):353–365. doi: 10.1091/mbc.8.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamel E., Lin C. M. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Biochemistry. 1984 Aug 28;23(18):4173–4184. doi: 10.1021/bi00313a026. [DOI] [PubMed] [Google Scholar]
- Herzog W., Weber K. Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerization in vitro. Eur J Biochem. 1978 Dec 1;92(1):1–8. doi: 10.1111/j.1432-1033.1978.tb12716.x. [DOI] [PubMed] [Google Scholar]
- Himes R. H., Kersey R. N., Heller-Bettinger I., Samson F. E. Action of the vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro. Cancer Res. 1976 Oct;36(10):3798–3802. [PubMed] [Google Scholar]
- Horowitz P., Prasad V., Luduena R. F. Bis(1,8-anilinonaphthalenesulfonate). A novel and potent inhibitor of microtubule assembly. J Biol Chem. 1984 Dec 10;259(23):14647–14650. [PubMed] [Google Scholar]
- Hudes G. R., Greenberg R., Krigel R. L., Fox S., Scher R., Litwin S., Watts P., Speicher L., Tew K., Comis R. Phase II study of estramustine and vinblastine, two microtubule inhibitors, in hormone-refractory prostate cancer. J Clin Oncol. 1992 Nov;10(11):1754–1761. doi: 10.1200/JCO.1992.10.11.1754. [DOI] [PubMed] [Google Scholar]
- Hudes G. R., Nathan F. E., Khater C., Greenberg R., Gomella L., Stern C., McAleer C. Paclitaxel plus estramustine in metastatic hormone-refractory prostate cancer. Semin Oncol. 1995 Oct;22(5 Suppl 12):41–45. [PubMed] [Google Scholar]
- Kimura G., Itagaki A., Summers J. Rat cell line 3y1 and its virogenic polyoma- and sv40- transformed derivatives. Int J Cancer. 1975 Apr 15;15(4):694–706. doi: 10.1002/ijc.2910150419. [DOI] [PubMed] [Google Scholar]
- Laing N., Dahllöf B., Hartley-Asp B., Ranganathan S., Tew K. D. Interaction of estramustine with tubulin isotypes. Biochemistry. 1997 Jan 28;36(4):871–878. doi: 10.1021/bi961445w. [DOI] [PubMed] [Google Scholar]
- Lee G., Cowan N., Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain. Science. 1988 Jan 15;239(4837):285–288. doi: 10.1126/science.3122323. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Timasheff S. N. The reconstitution of microtubules from purified calf brain tubulin. Biochemistry. 1975 Nov 18;14(23):5183–5187. doi: 10.1021/bi00694a025. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Tweedy N., Timasheff S. N. In vitro reconstitution of calf brain microtubules: effects of macromolecules. Biochemistry. 1978 Jul 11;17(14):2783–2790. doi: 10.1021/bi00607a013. [DOI] [PubMed] [Google Scholar]
- Lewis S. A., Wang D. H., Cowan N. J. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science. 1988 Nov 11;242(4880):936–939. doi: 10.1126/science.3142041. [DOI] [PubMed] [Google Scholar]
- Mandelbaum-Shavit F., Wolpert-DeFilippes M. K., Johns D. G. Binding of maytansine to rat brain tubulin. Biochem Biophys Res Commun. 1976 Sep 7;72(1):47–54. doi: 10.1016/0006-291x(76)90958-x. [DOI] [PubMed] [Google Scholar]
- Mareel M. M., Storme G. A., Dragonetti C. H., De Bruyne G. K., Hartley-Asp B., Segers J. L., Rabaey M. L. Antiinvasive activity of estramustine on malignant MO4 mouse cells and on DU-145 human prostate carcinoma cells in vitro. Cancer Res. 1988 Apr 1;48(7):1842–1849. [PubMed] [Google Scholar]
- Mazumdar M., Parrack P. K., Mukhopadhyay K., Bhattacharyya B. Bis-ANS as a specific inhibitor for microtubule-associated protein induced assembly of tubulin. Biochemistry. 1992 Jul 21;31(28):6470–6474. doi: 10.1021/bi00143a016. [DOI] [PubMed] [Google Scholar]
- Mineo C., Murakami Y., Ishimi Y., Hanaoka F., Yamada M. Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions. Exp Cell Res. 1986 Nov;167(1):53–62. doi: 10.1016/0014-4827(86)90203-x. [DOI] [PubMed] [Google Scholar]
- Moraga D., Rivas-Berrios A., Farías G., Wallin M., Maccioni R. B. Estramustine-phosphate binds to a tubulin binding domain on microtubule-associated proteins MAP-2 and tau. Biochim Biophys Acta. 1992 May 22;1121(1-2):97–103. doi: 10.1016/0167-4838(92)90342-b. [DOI] [PubMed] [Google Scholar]
- Osada H., Cui C. B., Onose R., Hanaoka F. Screening of cell cycle inhibitors from microbial metabolites by a bioassay using a mouse cdc2 mutant cell line, tsFT210. Bioorg Med Chem. 1997 Jan;5(1):193–203. doi: 10.1016/s0968-0896(96)00207-6. [DOI] [PubMed] [Google Scholar]
- Sackett D. L., Bhattacharyya B., Wolff J. Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem. 1985 Jan 10;260(1):43–45. [PubMed] [Google Scholar]
- Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
- Serrano L., de la Torre J., Maccioni R. B., Avila J. Involvement of the carboxyl-terminal domain of tubulin in the regulation of its assembly. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5989–5993. doi: 10.1073/pnas.81.19.5989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speicher L. A., Barone L., Tew K. D. Combined antimicrotubule activity of estramustine and taxol in human prostatic carcinoma cell lines. Cancer Res. 1992 Aug 15;52(16):4433–4440. [PubMed] [Google Scholar]
- Takahashi M., Iwasaki S., Kobayashi H., Okuda S., Murai T., Sato Y., Haraguchi-Hiraoka T., Nagano H. Studies on macrocyclic lactone antibiotics. XI. Anti-mitotic and anti-tubulin activity of new antitumor antibiotics, rhizoxin and its homologues. J Antibiot (Tokyo) 1987 Jan;40(1):66–72. doi: 10.7164/antibiotics.40.66. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Iwasaki S., Kobayashi H., Okuda S., Murai T., Sato Y. Rhizoxin binding to tubulin at the maytansine-binding site. Biochim Biophys Acta. 1987 Dec 7;926(3):215–223. doi: 10.1016/0304-4165(87)90206-6. [DOI] [PubMed] [Google Scholar]
- Th'ng J. P., Wright P. S., Hamaguchi J., Lee M. G., Norbury C. J., Nurse P., Bradbury E. M. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell. 1990 Oct 19;63(2):313–324. doi: 10.1016/0092-8674(90)90164-a. [DOI] [PubMed] [Google Scholar]
- Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]