Abstract
Addition of alkaline phosphatase to rat kidney cytosol diminishes the ability of the mineralocorticoid receptor (MR) to bind aldosterone in a time-, temperature- and concentration-dependent form. A variety of phosphatase inhibitors, including levamisole, are effective in preventing this inactivation. On the other hand, when the steroid-receptor complex is incubated in the presence of alkaline phosphatase, an increment in the rate of receptor transformation is evidenced by a change in the sedimentation coefficient from 8.8 S to 5.1 S, as well as increased DNA-binding capacity. The effects of alkaline phosphatase on activation and transformation can also be observed when the MR is incubated at 20 degreesC in the cytosolic medium, indicating that the catalytic action of an endogenous phosphatase may be involved in the transformation process. The ability of phosphatase inhibitors such as levamisole for suppressing both alkaline phosphatase- and endogenous phosphatase-directed transformation does not correspond well between them. Evidence is presented to affirm that the endogenous phosphatase activity is not due to an alkaline phosphatase-type, but it may be due to a protein serine/threonine phosphatase, as evidenced by the inhibitory effects of okadaic acid. The experimental results also show direct evidence that the MR undergoes phosphorylation in a physiological milieu.
Full Text
The Full Text of this article is available as a PDF (477.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alnemri E. S., Maksymowych A. B., Robertson N. M., Litwack G. Overexpression and characterization of the human mineralocorticoid receptor. J Biol Chem. 1991 Sep 25;266(27):18072–18081. [PubMed] [Google Scholar]
- Amero S. A., Kretsinger R. H., Moncrief N. D., Yamamoto K. R., Pearson W. R. The origin of nuclear receptor proteins: a single precursor distinct from other transcription factors. Mol Endocrinol. 1992 Jan;6(1):3–7. doi: 10.1210/mend.6.1.1738368. [DOI] [PubMed] [Google Scholar]
- Arriza J. L., Weinberger C., Cerelli G., Glaser T. M., Handelin B. L., Housman D. E., Evans R. M. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987 Jul 17;237(4812):268–275. doi: 10.1126/science.3037703. [DOI] [PubMed] [Google Scholar]
- Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brautigan D. L., Shriner C. L. Methods to distinguish various types of protein phosphatase activity. Methods Enzymol. 1988;159:339–346. doi: 10.1016/0076-6879(88)59034-1. [DOI] [PubMed] [Google Scholar]
- Burton G., Galigniana M., De Lavallaz S., Brachet-Cota A. L., Sproviero E. M., Ghini A. A., Lantos C. P., Damasco M. C. Sodium-retaining activity of some natural and synthetic 21-deoxysteroids. Mol Pharmacol. 1995 Mar;47(3):535–543. [PubMed] [Google Scholar]
- Caamaño C. A., Morano M. I., Patel P. D., Watson S. J., Akil H. A bacterially expressed mineralocorticoid receptor is associated in vitro with the 90-kilodalton heat shock protein and shows typical hormone- and DNA-binding characteristics. Biochemistry. 1993 Aug 24;32(33):8589–8595. doi: 10.1021/bi00084a028. [DOI] [PubMed] [Google Scholar]
- Chen M. X., McPartlin A. E., Brown L., Chen Y. H., Barker H. M., Cohen P. T. A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J. 1994 Sep 15;13(18):4278–4290. doi: 10.1002/j.1460-2075.1994.tb06748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen P. Classification of protein-serine/threonine phosphatases: identification and quantitation in cell extracts. Methods Enzymol. 1991;201:389–398. doi: 10.1016/0076-6879(91)01035-z. [DOI] [PubMed] [Google Scholar]
- DeFranco D. B., Qi M., Borror K. C., Garabedian M. J., Brautigan D. L. Protein phosphatase types 1 and/or 2A regulate nucleocytoplasmic shuttling of glucocorticoid receptors. Mol Endocrinol. 1991 Sep;5(9):1215–1228. doi: 10.1210/mend-5-9-1215. [DOI] [PubMed] [Google Scholar]
- Defranco D. B., Madan A. P., Tang Y., Chandran U. R., Xiao N., Yang J. Nucleocytoplasmic shuttling of steroid receptors. Vitam Horm. 1995;51:315–338. doi: 10.1016/s0083-6729(08)61043-2. [DOI] [PubMed] [Google Scholar]
- Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galigniana M. D. Stability study on renal type I mineralocorticoid receptor. Life Sci. 1996;59(7):511–521. doi: 10.1016/0024-3205(96)00331-1. [DOI] [PubMed] [Google Scholar]
- Galigniana M. D., Vicent G. P., Burton G., Lantos C. P. Features of the shuttle pair 11 beta-hydroxyprogesterone-11-ketoprogesterone. Steroids. 1997 Apr;62(4):358–364. doi: 10.1016/s0039-128x(96)00244-9. [DOI] [PubMed] [Google Scholar]
- Jenster G., Trapman J., Brinkmann A. O. Nuclear import of the human androgen receptor. Biochem J. 1993 Aug 1;293(Pt 3):761–768. doi: 10.1042/bj2930761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munck A., Brinck-Johnsen T. Specific and nonspecific physicochemical interactions of glucocorticoids and related steroids with rat thymus cells in vitro. J Biol Chem. 1968 Nov 10;243(21):5556–5565. [PubMed] [Google Scholar]
- Nielsen C. J., Sando J. J., Pratt W. B. Evidence that dephosphorylation inactivates glucocorticoid receptors. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1398–1402. doi: 10.1073/pnas.74.4.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortí E., Bodwell J. E., Munck A. Phosphorylation of steroid hormone receptors. Endocr Rev. 1992 Feb;13(1):105–128. doi: 10.1210/edrv-13-1-105. [DOI] [PubMed] [Google Scholar]
- Patel P. D., Sherman T. G., Goldman D. J., Watson S. J. Molecular cloning of a mineralocorticoid (type I) receptor complementary DNA from rat hippocampus. Mol Endocrinol. 1989 Nov;3(11):1877–1885. doi: 10.1210/mend-3-11-1877. [DOI] [PubMed] [Google Scholar]
- Pratt W. B. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol. 1997;37:297–326. doi: 10.1146/annurev.pharmtox.37.1.297. [DOI] [PubMed] [Google Scholar]
- Pratt W. B., Toft D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997 Jun;18(3):306–360. doi: 10.1210/edrv.18.3.0303. [DOI] [PubMed] [Google Scholar]
- Sanchez E. R., Hirst M., Scherrer L. C., Tang H. Y., Welsh M. J., Harmon J. M., Simons S. S., Jr, Ringold G. M., Pratt W. B. Hormone-free mouse glucocorticoid receptors overexpressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp70 and hsp90. J Biol Chem. 1990 Nov 25;265(33):20123–20130. [PubMed] [Google Scholar]
- Silverstein A. M., Galigniana M. D., Chen M. S., Owens-Grillo J. K., Chinkers M., Pratt W. B. Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem. 1997 Jun 27;272(26):16224–16230. doi: 10.1074/jbc.272.26.16224. [DOI] [PubMed] [Google Scholar]
- Somers J. P., DeFranco D. B. Effects of okadaic acid, a protein phosphatase inhibitor, on glucocorticoid receptor-mediated enhancement. Mol Endocrinol. 1992 Jan;6(1):26–34. doi: 10.1210/mend.6.1.1310797. [DOI] [PubMed] [Google Scholar]
- Trapp T., Holsboer F. Ligand-induced conformational changes in the mineralocorticoid receptor analyzed by protease mapping. Biochem Biophys Res Commun. 1995 Oct 4;215(1):286–291. doi: 10.1006/bbrc.1995.2464. [DOI] [PubMed] [Google Scholar]