Abstract
The extracellular region of the macrophage mannose receptor, a protein involved in the innate immune response, contains eight C-type carbohydrate-recognition domains (CRDs). The fourth of these domains, CRD-4, is central to ligand binding by the receptor, and binds mannose, fucose and N-acetylglucosamine by direct ligation to Ca2+. Site-directed mutagenesis combined with NMR and molecular modelling have been used to determine the orientation of monosaccharides bound to CRD-4. Two resonances in the 1H NMR spectrum of CRD-4 that are perturbed on sugar binding are identified as a methyl proton from a leucine side chain in the core of the domain and the H-2 proton of a histidine close to the predicted sugar-binding site. The effects of mutagenesis of this histidine residue, a nearby isoleucine residue and a tyrosine residue previously shown to stack against sugars bound to CRD-4 show the absolute orientation of sugars in the binding site. N-Acetylglucosamine binds to CRD-4 of the mannose receptor in the orientation seen in crystal structures of the CRD of rat liver mannose-binding protein. Mannose binds to CRD-4 in the orientation seen in the CRD of rat serum mannose-binding protein and is rotated by 180 degrees relative to GlcNAc bound to CRD-4. Interaction of the O-methyl group and C-1 of alpha-methyl Fuc with the tyrosine residue accounts for the strong preference of CRD-4 for this anomer of fucose. Both anomers of fucose bind to CRD-4 in the orientation seen in rat liver mannose-binding protein.
Full Text
The Full Text of this article is available as a PDF (641.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burrows L., Iobst S. T., Drickamer K. Selective binding of N-acetylglucosamine to the chicken hepatic lectin. Biochem J. 1997 Jun 1;324(Pt 2):673–680. doi: 10.1042/bj3240673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drickamer K., Taylor M. E. Biology of animal lectins. Annu Rev Cell Biol. 1993;9:237–264. doi: 10.1146/annurev.cb.09.110193.001321. [DOI] [PubMed] [Google Scholar]
- Epstein J., Eichbaum Q., Sheriff S., Ezekowitz R. A. The collectins in innate immunity. Curr Opin Immunol. 1996 Feb;8(1):29–35. doi: 10.1016/s0952-7915(96)80101-4. [DOI] [PubMed] [Google Scholar]
- Ezekowitz R. A., Williams D. J., Koziel H., Armstrong M. Y., Warner A., Richards F. F., Rose R. M. Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature. 1991 May 9;351(6322):155–158. doi: 10.1038/351155a0. [DOI] [PubMed] [Google Scholar]
- Iobst S. T., Wormald M. R., Weis W. I., Dwek R. A., Drickamer K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J Biol Chem. 1994 Jun 3;269(22):15505–15511. [PubMed] [Google Scholar]
- Kolatkar A. R., Weis W. I. Structural basis of galactose recognition by C-type animal lectins. J Biol Chem. 1996 Mar 22;271(12):6679–6685. [PubMed] [Google Scholar]
- Mullin N. P., Hall K. T., Taylor M. E. Characterization of ligand binding to a carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem. 1994 Nov 11;269(45):28405–28413. [PubMed] [Google Scholar]
- Mullin N. P., Hitchen P. G., Taylor M. E. Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem. 1997 Feb 28;272(9):5668–5681. doi: 10.1074/jbc.272.9.5668. [DOI] [PubMed] [Google Scholar]
- Ng K. K., Drickamer K., Weis W. I. Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J Biol Chem. 1996 Jan 12;271(2):663–674. doi: 10.1074/jbc.271.2.663. [DOI] [PubMed] [Google Scholar]
- Otter M., Barrett-Bergshoeff M. M., Rijken D. C. Binding of tissue-type plasminogen activator by the mannose receptor. J Biol Chem. 1991 Jul 25;266(21):13931–13935. [PubMed] [Google Scholar]
- Perkins S. J., Dwek R. A. Comparisons of ring-current shifts calculated from the crystal structure of egg white lysozyme of hen with the proton nuclear magnetic resonance spectrum of lysozyme in solution. Biochemistry. 1980 Jan 22;19(2):245–258. doi: 10.1021/bi00543a001. [DOI] [PubMed] [Google Scholar]
- Taylor M. E., Bezouska K., Drickamer K. Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem. 1992 Jan 25;267(3):1719–1726. [PubMed] [Google Scholar]
- Taylor M. E., Conary J. T., Lennartz M. R., Stahl P. D., Drickamer K. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem. 1990 Jul 25;265(21):12156–12162. [PubMed] [Google Scholar]
- Taylor M. E., Drickamer K. Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor. J Biol Chem. 1993 Jan 5;268(1):399–404. [PubMed] [Google Scholar]
- Taylor M. E. Evolution of a family of receptors containing multiple C-type carbohydrate-recognition domains. Glycobiology. 1997 Apr;7(3):v–viii. doi: 10.1093/glycob/7.3.323. [DOI] [PubMed] [Google Scholar]
- Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
- Weis W. I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]