Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 1;333(Pt 3):677–683. doi: 10.1042/bj3330677

Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment.

M A Cooper 1, J Carroll 1, E R Travis 1, D H Williams 1, D J Ellar 1
PMCID: PMC1219632  PMID: 9677328

Abstract

The Bacillus thuringiensis Cry1Ac delta-endotoxin was shown to bind in a biphasic manner to Manduca sexta aminopeptidase N (APN) present in a novel model membrane. Surface plasmon resonance analysis allowed the quantification of toxin binding to M. sexta APN in a supported lipid monolayer. The initial binding was rapid and reversible, with an affinity constant of 110 nM. The second phase was slower and resulted in an overall affinity constant of 3.0 nM. Reagents used to disrupt protein-protein interactions did not dissociate the toxin after high-affinity binding was attained. The initial association between Cry1Ac and APN was inhibited by the sugar GalNAc, but the higher-affinity state was resistant to GalNAc-induced dissociation. The results suggest that after binding to M. sexta APN, the Cry1Ac toxin undergoes a rate-limiting step leading to a high-affinity state. A site-directed Cry1Ac mutant, N135Q, exhibited a similar initial binding affinity for APN but did not show the second slower phase. This inability to form an irreversible association with the APN-lipid monolayer helps explain the lack of toxicity of this protein towards M. sexta larvae and its deficient membrane-permeabilizing activity on M. sexta midgut brush border membrane vesicles.

Full Text

The Full Text of this article is available as a PDF (314.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad W., Ellar D. J. Directed mutagenesis of selected regions of a Bacillus thuringiensis entomocidal protein. FEMS Microbiol Lett. 1990 Mar 1;56(1-2):97–104. doi: 10.1016/0378-1097(90)90132-a. [DOI] [PubMed] [Google Scholar]
  2. Bietlot H., Carey P. R., Choma C., Kaplan H., Lessard T., Pozsgay M. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. Biochem J. 1989 May 15;260(1):87–91. doi: 10.1042/bj2600087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Carroll J., Ellar D. J. An analysis of Bacillus thuringiensis delta-endotoxin action on insect-midgut-membrane permeability using a light-scattering assay. Eur J Biochem. 1993 Jun 15;214(3):771–778. doi: 10.1111/j.1432-1033.1993.tb17979.x. [DOI] [PubMed] [Google Scholar]
  5. Carroll J., Ellar D. J. Analysis of the large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-border-membrane vesicles. Eur J Biochem. 1997 May 1;245(3):797–804. doi: 10.1111/j.1432-1033.1997.00797.x. [DOI] [PubMed] [Google Scholar]
  6. Chen X. J., Curtiss A., Alcantara E., Dean D. H. Mutations in domain I of Bacillus thuringiensis delta-endotoxin CryIAb reduce the irreversible binding of toxin to manduca sexta brush border membrane vesicles. J Biol Chem. 1995 Mar 17;270(11):6412–6419. doi: 10.1074/jbc.270.11.6412. [DOI] [PubMed] [Google Scholar]
  7. Dean D. H., Rajamohan F., Lee M. K., Wu S. J., Chen X. J., Alcantara E., Hussain S. R. Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis--a minireview. Gene. 1996 Nov 7;179(1):111–117. doi: 10.1016/s0378-1119(96)00442-8. [DOI] [PubMed] [Google Scholar]
  8. Denolf P., Hendrickx K., Van Damme J., Jansens S., Peferoen M., Degheele D., Van Rie J. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur J Biochem. 1997 Sep 15;248(3):748–761. doi: 10.1111/j.1432-1033.1997.t01-1-00748.x. [DOI] [PubMed] [Google Scholar]
  9. Garczynski S. F., Crim J. W., Adang M. J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol. 1991 Oct;57(10):2816–2820. doi: 10.1128/aem.57.10.2816-2820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gill S. S., Cowles E. A., Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem. 1995 Nov 10;270(45):27277–27282. doi: 10.1074/jbc.270.45.27277. [DOI] [PubMed] [Google Scholar]
  11. Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J. L., Brousseau R., Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol. 1995 Dec 1;254(3):447–464. doi: 10.1006/jmbi.1995.0630. [DOI] [PubMed] [Google Scholar]
  12. Hofmann C., Vanderbruggen H., Höfte H., Van Rie J., Jansens S., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7844–7848. doi: 10.1073/pnas.85.21.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  15. Karlsson R., Fält A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods. 1997 Jan 15;200(1-2):121–133. doi: 10.1016/s0022-1759(96)00195-0. [DOI] [PubMed] [Google Scholar]
  16. Knight P. J., Crickmore N., Ellar D. J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol. 1994 Feb;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knight P. J., Knowles B. H., Ellar D. J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem. 1995 Jul 28;270(30):17765–17770. doi: 10.1074/jbc.270.30.17765. [DOI] [PubMed] [Google Scholar]
  18. Knowles B. H., Knight P. J., Ellar D. J. N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proc Biol Sci. 1991 Jul 22;245(1312):31–35. doi: 10.1098/rspb.1991.0084. [DOI] [PubMed] [Google Scholar]
  19. Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991 Oct 31;353(6347):815–821. doi: 10.1038/353815a0. [DOI] [PubMed] [Google Scholar]
  20. Liang Y., Patel S. S., Dean D. H. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J Biol Chem. 1995 Oct 20;270(42):24719–24724. doi: 10.1074/jbc.270.42.24719. [DOI] [PubMed] [Google Scholar]
  21. Lieberman H. R. Estimating LD50 using the probit technique: a BASIC computer program. Drug Chem Toxicol. 1983;6(1):111–116. doi: 10.3109/01480548309072465. [DOI] [PubMed] [Google Scholar]
  22. Luo K., Tabashnik B. E., Adang M. J. Binding of Bacillus thuringiensis Cry1Ac Toxin to Aminopeptidase in Susceptible and Resistant Diamondback Moths (Plutella xylostella). Appl Environ Microbiol. 1997 Mar;63(3):1024–1027. doi: 10.1128/aem.63.3.1024-1027.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Masson L., Lu Y. J., Mazza A., Brousseau R., Adang M. J. The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem. 1995 Sep 1;270(35):20309–20315. doi: 10.1074/jbc.270.35.20309. [DOI] [PubMed] [Google Scholar]
  24. Masson L., Mazza A., Brousseau R., Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem. 1995 May 19;270(20):11887–11896. doi: 10.1074/jbc.270.20.11887. [DOI] [PubMed] [Google Scholar]
  25. Myszka D. G., Morton T. A., Doyle M. L., Chaiken I. M. Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor. Biophys Chem. 1997 Feb 28;64(1-3):127–137. doi: 10.1016/s0301-4622(96)02230-2. [DOI] [PubMed] [Google Scholar]
  26. Sangadala S., Walters F. S., English L. H., Adang M. J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J Biol Chem. 1994 Apr 1;269(13):10088–10092. [PubMed] [Google Scholar]
  27. Schwartz J. L., Lu Y. J., Söhnlein P., Brousseau R., Laprade R., Masson L., Adang M. J. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Lett. 1997 Jul 28;412(2):270–276. doi: 10.1016/s0014-5793(97)00801-6. [DOI] [PubMed] [Google Scholar]
  28. Smedley D. P., Ellar D. J. Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology. 1996 Jul;142(Pt 7):1617–1624. doi: 10.1099/13500872-142-7-1617. [DOI] [PubMed] [Google Scholar]
  29. Stewart G. S., Johnstone K., Hagelberg E., Ellar D. J. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Biochem J. 1981 Jul 15;198(1):101–106. doi: 10.1042/bj1980101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vadlamudi R. K., Weber E., Ji I., Ji T. H., Bulla L. A., Jr Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem. 1995 Mar 10;270(10):5490–5494. doi: 10.1074/jbc.270.10.5490. [DOI] [PubMed] [Google Scholar]
  31. Valaitis A. P., Lee M. K., Rajamohan F., Dean D. H. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis. Insect Biochem Mol Biol. 1995 Dec;25(10):1143–1151. doi: 10.1016/0965-1748(95)00050-x. [DOI] [PubMed] [Google Scholar]
  32. Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol. 1990 May;56(5):1378–1385. doi: 10.1128/aem.56.5.1378-1385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem. 1989 Dec 8;186(1-2):239–247. doi: 10.1111/j.1432-1033.1989.tb15201.x. [DOI] [PubMed] [Google Scholar]
  34. Wu D., Aronson A. I. Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem. 1992 Feb 5;267(4):2311–2317. [PubMed] [Google Scholar]
  35. Yaoi K., Kadotani T., Kuwana H., Shinkawa A., Takahashi T., Iwahana H., Sato R. Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. Eur J Biochem. 1997 Jun 15;246(3):652–657. doi: 10.1111/j.1432-1033.1997.t01-1-00652.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES