Abstract
A method was developed for the purification of catechol 1, 2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 that had been grown in the presence of benzyl alcohol. The enzyme has very similar apparent Km (1-2 microM) and Vmax (13-19 units/mg of protein) values for the intradiol cleavage of catechol, 3-methylcatechol and 4-methylcatechol and it is optimally active at pH9. Cross-linking studies indicate that the enzyme is a homodimer. It contains 0.6 atoms of Fe per subunit. The enzyme was crystallized with 15% (w/v) poly(ethylene glycol) 4000/0.33 M CaCl2/25 mM Tris (pH7.5) by using a microseeding technique. Preliminary X-ray characterization showed that the crystals are in space group C2 with unit-cell dimensions a=111.9 A, b=78.1 A, c=134.6 A, beta=100 degrees. An oligonucleotide probe, made by hemi-nested PCR, was used to clone the gene encoding catechol 1,2-dioxygenase (catA). The deduced 282-residue sequence corresponds to a protein of molecular mass 31539 Da, close to the molecular mass of 31558 Da obtained by electrospray MS of the purified enzyme. catA was subcloned into the expression vector pTB361, allowing the production of catechol 1,2-dioxygenase to approx. 40% of the total cellular protein. The deduced amino acid sequence of the enzyme has 56% and 75% identity with the catechol 1, 2-dioxygenases of Arthrobacter mA3 and Rhodococcus erythropolis AN-13 respectively, but less than 35% identity with intradiol catechol and chlorocatechol dioxygenases of Gram-negative bacteria.
Full Text
The Full Text of this article is available as a PDF (390.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhat M. A., Ishida T., Horiike K., Vaidyanathan C. S., Nozaki M. Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90. Arch Biochem Biophys. 1993 Feb 1;300(2):738–746. doi: 10.1006/abbi.1993.1102. [DOI] [PubMed] [Google Scholar]
- Bouwer E. J., Zehnder A. J. Bioremediation of organic compounds--putting microbial metabolism to work. Trends Biotechnol. 1993 Aug;11(8):360–367. doi: 10.1016/0167-7799(93)90159-7. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Broderick J. B., O'Halloran T. V. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry. 1991 Jul 23;30(29):7349–7358. doi: 10.1021/bi00243a040. [DOI] [PubMed] [Google Scholar]
- Chen Y. P., Lovell C. R. Purification and Properties of Catechol 1,2-Dioxygenase from Rhizobium leguminosarum biovar viceae USDA 2370. Appl Environ Microbiol. 1990 Jun;56(6):1971–1973. doi: 10.1128/aem.56.6.1971-1973.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collado-Vides J., Magasanik B., Gralla J. D. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev. 1991 Sep;55(3):371–394. doi: 10.1128/mr.55.3.371-394.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J. 1978 Jul 15;174(1):85–94. doi: 10.1042/bj1740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J. 1978 Jul 15;174(1):85–94. doi: 10.1042/bj1740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. doi: 10.1042/bj1740073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eck R., Belter J. Cloning and characterization of a gene coding for the catechol 1,2-dioxygenase of Arthrobacter sp. mA3. Gene. 1993 Jan 15;123(1):87–92. doi: 10.1016/0378-1119(93)90544-d. [DOI] [PubMed] [Google Scholar]
- Fujiwara M., Golovleva L. A., Saeki Y., Nozaki M., Hayaishi O. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. J Biol Chem. 1975 Jul 10;250(13):4848–4855. [PubMed] [Google Scholar]
- Gibson D. T. Microbial degradation of aromatic compounds. Science. 1967 Sep 13;161(3846):1093–1097. [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Goethals K., Van Montagu M., Holsters M. Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1646–1650. doi: 10.1073/pnas.89.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold L., Pribnow D., Schneider T., Shinedling S., Singer B. S., Stormo G. Translational initiation in prokaryotes. Annu Rev Microbiol. 1981;35:365–403. doi: 10.1146/annurev.mi.35.100181.002053. [DOI] [PubMed] [Google Scholar]
- Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasak L., Hôrak R., Nurk A., Talvik K., Kivisaar M. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. J Bacteriol. 1993 Dec;175(24):8038–8042. doi: 10.1128/jb.175.24.8038-8042.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Maltseva O. V., Solyanikova I. P., Golovleva L. A. Chlorocatechol 1,2-dioxygenase from Rhodococcus erythropolis 1CP. Kinetic and immunochemical comparison with analogous enzymes from gram-negative strains. Eur J Biochem. 1994 Dec 15;226(3):1053–1061. doi: 10.1111/j.1432-1033.1994.01053.x. [DOI] [PubMed] [Google Scholar]
- Matrubutham U., Harker A. R. Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134. J Bacteriol. 1994 Apr;176(8):2348–2353. doi: 10.1128/jb.176.8.2348-2353.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- McLaughlin J. R., Murray C. L., Rabinowitz J. C. Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus beta-lactamase gene. J Biol Chem. 1981 Nov 10;256(21):11283–11291. [PubMed] [Google Scholar]
- Mordarski M., Goodfellow M., Tkacz A., Pulverer G., Schaal K. P. Ribosomal ribonucleic acid similarities in the classification of Rhodococcus and related taxa. J Gen Microbiol. 1980 Jun;118(2):313–319. doi: 10.1099/00221287-118-2-313. [DOI] [PubMed] [Google Scholar]
- Murakami S., Kodama N., Shinke R., Aoki K. Classification of catechol 1,2-dioxygenase family: sequence analysis of a gene for the catechol 1,2-dioxygenase showing high specificity for methylcatechols from Gram+ aniline-assimilating Rhodococcus erythropolis AN-13. Gene. 1997 Jan 31;185(1):49–54. doi: 10.1016/s0378-1119(96)00629-4. [DOI] [PubMed] [Google Scholar]
- Nakai C., Horiike K., Kuramitsu S., Kagamiyama H., Nozaki M. Three isozymes of catechol 1,2-dioxygenase (pyrocatechase), alpha alpha, alpha beta, and beta beta, from Pseudomonas arvilla C-1. J Biol Chem. 1990 Jan 15;265(2):660–665. [PubMed] [Google Scholar]
- Neidle E. L., Hartnett C., Bonitz S., Ornston L. N. DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase I structural gene catA: evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA sequence repetitions. J Bacteriol. 1988 Oct;170(10):4874–4880. doi: 10.1128/jb.170.10.4874-4880.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nozaki M. Oxygenases and dioxygenases. Top Curr Chem. 1979;78:145–186. doi: 10.1007/BFb0048193. [DOI] [PubMed] [Google Scholar]
- Patel R. N., Hou C. T., Felix A., Lillard M. O. Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties. J Bacteriol. 1976 Jul;127(1):536–544. doi: 10.1128/jb.127.1.536-544.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warhurst A. M., Clarke K. F., Hill R. A., Holt R. A., Fewson C. A. Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol. 1994 Apr;60(4):1137–1145. doi: 10.1128/aem.60.4.1137-1145.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warhurst A. M., Fewson C. A. Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol. 1994;14(1):29–73. doi: 10.3109/07388559409079833. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]