Abstract
Ceramide (Cer) transfer from the endoplasmic reticulum (ER) to the Golgi apparatus was measured under conditions that block vesicle-mediated protein transfer. This was done either in intact cells by reducing the incubation temperature to 15 degreesC, or in streptolysin O-permeabilized cells by manipulating the intracellular environment. In both cases, Cer transfer was not inhibited, as demonstrated by the biosynthesis of ceramide monohexosides and sphingomyelin (SM) de novo from metabolically (with [14C]serine) labelled Cer. This assay is based on the knowledge that Cer is synthesized, starting from serine and palmitoyl-CoA, at the ER, whereas glycosphingolipids and SM are synthesized in the (early) Golgi apparatus. Formation of [14C]glycosphingolipids and [14C]SM was observed under conditions that block vesicle-mediated vesicular stomatitis virus glycoprotein transport. These results indicate that [14C]Cer is transferred from ER to Golgi by a non-vesicular mechanism.
Full Text
The Full Text of this article is available as a PDF (546.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Babia T., Kok J. W., Hulstaert C., de Weerd H., Hoekstra D. Differential metabolism and trafficking of sphingolipids in differentiated versus undifferentiated HT29 cells. Int J Cancer. 1993 Jul 9;54(5):839–845. doi: 10.1002/ijc.2910540519. [DOI] [PubMed] [Google Scholar]
- Babia T., Kok J. W., van der Haar M., Kalicharan R., Hoekstra D. Transport of biosynthetic sphingolipids from Golgi to plasma membrane in HT29 cells: involvement of different carrier vesicle populations. Eur J Cell Biol. 1994 Apr;63(2):172–181. [PubMed] [Google Scholar]
- Balch W. E., Elliott M. M., Keller D. S. ATP-coupled transport of vesicular stomatitis virus G protein between the endoplasmic reticulum and the Golgi. J Biol Chem. 1986 Nov 5;261(31):14681–14689. [PubMed] [Google Scholar]
- Bauldry S. A., Nasrallah V. N., Bass D. A. Activation of NADPH oxidase in human neutrophils permeabilized with Staphylococcus aureus alpha-toxin. A lower Km when the enzyme is activated in situ. J Biol Chem. 1992 Jan 5;267(1):323–330. [PubMed] [Google Scholar]
- Beckers C. J., Keller D. S., Balch W. E. Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell. 1987 Aug 14;50(4):523–534. doi: 10.1016/0092-8674(87)90025-0. [DOI] [PubMed] [Google Scholar]
- Beckers C. J., Plutner H., Davidson H. W., Balch W. E. Sequential intermediates in the transport of protein between the endoplasmic reticulum and the Golgi. J Biol Chem. 1990 Oct 25;265(30):18298–18310. [PubMed] [Google Scholar]
- Beckers J. M., Rothman J. E. Transport between Golgi cisternae. Methods Enzymol. 1992;219:5–12. doi: 10.1016/0076-6879(92)19004-p. [DOI] [PubMed] [Google Scholar]
- Collins R. N., Warren G. Sphingolipid transport in mitotic HeLa cells. J Biol Chem. 1992 Dec 5;267(34):24906–24911. [PubMed] [Google Scholar]
- Coste H., Martel M. B., Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta. 1986 Jun 13;858(1):6–12. doi: 10.1016/0005-2736(86)90285-3. [DOI] [PubMed] [Google Scholar]
- Futerman A. H., Pagano R. E. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J. 1991 Dec 1;280(Pt 2):295–302. doi: 10.1042/bj2800295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futerman A. H., Stieger B., Hubbard A. L., Pagano R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem. 1990 May 25;265(15):8650–8657. [PubMed] [Google Scholar]
- Ganong B. R., Bell R. M. Transmembrane movement of phosphatidylglycerol and diacylglycerol sulfhydryl analogues. Biochemistry. 1984 Oct 9;23(21):4977–4983. doi: 10.1021/bi00316a023. [DOI] [PubMed] [Google Scholar]
- Gatt S., Barenholz Y., Goldberg R., Dinur T., Besley G., Leibovitz-Ben Gershon Z., Rosenthal J., Desnick R. J., Devine E. A., Shafit-Zagardo B. Assay of enzymes of lipid metabolism with colored and fluorescent derivatives of natural lipids. Methods Enzymol. 1981;72:351–375. doi: 10.1016/s0076-6879(81)72026-3. [DOI] [PubMed] [Google Scholar]
- Hicke L., Schekman R. Molecular machinery required for protein transport from the endoplasmic reticulum to the Golgi complex. Bioessays. 1990 Jun;12(6):253–258. doi: 10.1002/bies.950120602. [DOI] [PubMed] [Google Scholar]
- Hirschberg K., Rodger J., Futerman A. H. The long-chain sphingoid base of sphingolipids is acylated at the cytosolic surface of the endoplasmic reticulum in rat liver. Biochem J. 1993 Mar 15;290(Pt 3):751–757. doi: 10.1042/bj2900751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoekstra D., Kok J. W. Trafficking of glycosphingolipids in eukaryotic cells; sorting and recycling of lipids. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):277–294. doi: 10.1016/0304-4157(92)90002-r. [DOI] [PubMed] [Google Scholar]
- Hong W., Tang B. L. Protein trafficking along the exocytotic pathway. Bioessays. 1993 Apr;15(4):231–238. doi: 10.1002/bies.950150403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeckel D., Karrenbauer A., Birk R., Schmidt R. R., Wieland F. Sphingomyelin is synthesized in the cis Golgi. FEBS Lett. 1990 Feb 12;261(1):155–157. doi: 10.1016/0014-5793(90)80659-7. [DOI] [PubMed] [Google Scholar]
- Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kendler A., Dawson G. Hypoxic injury to oligodendrocytes: reversible inhibition of ATP-dependent transport of ceramide from the endoplasmic reticulum to the Golgi. J Neurosci Res. 1992 Feb;31(2):205–211. doi: 10.1002/jnr.490310202. [DOI] [PubMed] [Google Scholar]
- Kok J. W., Babia T., Klappe K., Hoekstra D. Fluorescent, short-chain C6-NBD-sphingomyelin, but not C6-NBD-glucosylceramide, is subject to extensive degradation in the plasma membrane: implications for signal transduction related to cell differentiation. Biochem J. 1995 Aug 1;309(Pt 3):905–912. doi: 10.1042/bj3090905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kok J. W., Nikolova-Karakashian M., Klappe K., Alexander C., Merrill A. H., Jr Dihydroceramide biology. Structure-specific metabolism and intracellular localization. J Biol Chem. 1997 Aug 22;272(34):21128–21136. doi: 10.1074/jbc.272.34.21128. [DOI] [PubMed] [Google Scholar]
- Kuismanen E., Saraste J. Low temperature-induced transport blocks as tools to manipulate membrane traffic. Methods Cell Biol. 1989;32:257–274. doi: 10.1016/s0091-679x(08)61174-7. [DOI] [PubMed] [Google Scholar]
- Kundu S. K. Thin-layer chromatography of neutral glycosphingolipids and gangliosides. Methods Enzymol. 1981;72:185–204. doi: 10.1016/s0076-6879(81)72012-3. [DOI] [PubMed] [Google Scholar]
- Lipsky N. G., Pagano R. E. A vital stain for the Golgi apparatus. Science. 1985 May 10;228(4700):745–747. doi: 10.1126/science.2581316. [DOI] [PubMed] [Google Scholar]
- Mandon E. C., Ehses I., Rother J., van Echten G., Sandhoff K. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem. 1992 Jun 5;267(16):11144–11148. [PubMed] [Google Scholar]
- Michel C., van Echten-Deckert G., Rother J., Sandhoff K., Wang E., Merrill A. H., Jr Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem. 1997 Sep 5;272(36):22432–22437. doi: 10.1074/jbc.272.36.22432. [DOI] [PubMed] [Google Scholar]
- Mironov A., Colanzi A., Silletta M. G., Fiucci G., Flati S., Fusella A., Polishchuk R., Mironov A., Jr, Di Tullio G., Weigert R. Role of NAD+ and ADP-ribosylation in the maintenance of the Golgi structure. J Cell Biol. 1997 Dec 1;139(5):1109–1118. doi: 10.1083/jcb.139.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreau P., Cassagne C., Keenan T. W., Morré D. J. Ceramide excluded from cell-free vesicular lipid transfer from endoplasmic reticulum to Golgi apparatus. Evidence for lipid sorting. Biochim Biophys Acta. 1993 Feb 23;1146(1):9–16. doi: 10.1016/0005-2736(93)90332-t. [DOI] [PubMed] [Google Scholar]
- Saraste J., Palade G. E., Farquhar M. G. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6425–6429. doi: 10.1073/pnas.83.17.6425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwaninger R., Beckers C. J., Balch W. E. Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi-intact cells. J Biol Chem. 1991 Jul 15;266(20):13055–13063. [PubMed] [Google Scholar]
- Slomiany A., Grzelinska E., Grabska M., Yamaki K., Tamura S., Kasinathan C., Slomiany B. L. Intracellular processes associated with glycoprotein transport and processing. Arch Biochem Biophys. 1992 Oct;298(1):167–175. doi: 10.1016/0003-9861(92)90108-9. [DOI] [PubMed] [Google Scholar]
- Slomiany A., Grzelinska E., Kasinathan C., Yamaki K., Palecz D., Slomiany B. A., Slomiany B. L. Biogenesis of endoplasmic reticulum transport vesicles transferring gastric apomucin from ER to Golgi. Exp Cell Res. 1992 Aug;201(2):321–329. doi: 10.1016/0014-4827(92)90280-l. [DOI] [PubMed] [Google Scholar]
- Tan A., Bolscher J., Feltkamp C., Ploegh H. Retrograde transport from the Golgi region to the endoplasmic reticulum is sensitive to GTP gamma S. J Cell Biol. 1992 Mar;116(6):1357–1367. doi: 10.1083/jcb.116.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tisdale E. J., Bourne J. R., Khosravi-Far R., Der C. J., Balch W. E. GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol. 1992 Nov;119(4):749–761. doi: 10.1083/jcb.119.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trinchera M., Fabbri M., Ghidoni R. Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J Biol Chem. 1991 Nov 5;266(31):20907–20912. [PubMed] [Google Scholar]
- van Echten G., Iber H., Stotz H., Takatsuki A., Sandhoff K. Uncoupling of ganglioside biosynthesis by Brefeldin A. Eur J Cell Biol. 1990 Feb;51(1):135–139. [PubMed] [Google Scholar]
- van Helvoort A., Giudici M. L., Thielemans M., van Meer G. Transport of sphingomyelin to the cell surface is inhibited by brefeldin A and in mitosis, where C6-NBD-sphingomyelin is translocated across the plasma membrane by a multidrug transporter activity. J Cell Sci. 1997 Jan;110(Pt 1):75–83. doi: 10.1242/jcs.110.1.75. [DOI] [PubMed] [Google Scholar]
- van Helvoort A., van Meer G. Intracellular lipid heterogeneity caused by topology of synthesis and specificity in transport. Example: sphingolipids. FEBS Lett. 1995 Aug 1;369(1):18–21. doi: 10.1016/0014-5793(95)00616-h. [DOI] [PubMed] [Google Scholar]
- van Meer G., Stelzer E. H., Wijnaendts-van-Resandt R. W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol. 1987 Oct;105(4):1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]