Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 1;333(Pt 3):801–809. doi: 10.1042/bj3330801

Sheep mast-cell proteinases-1 and -3: cDNA cloning, primary structure and molecular modelling of the enzymes and further studies on substrate specificity.

S M McAleese 1, A D Pemberton 1, M E McGrath 1, J F Huntley 1, H R Miller 1
PMCID: PMC1219647  PMID: 9677343

Abstract

Sheep mast-cell proteinase-1 (sMCP-1) is a serine proteinase expressed predominantly by mucosal mast cells, with specificity for cleavage C-terminal to basic and hydrophobic amino acid residues. A cDNA encoding sMCP-1 has been cloned using reverse transcriptase (RT)-PCR. It appears to be translated as a pre-proenzyme with a 17-amino-acid signal peptide, a basic 2-amino-acid propeptide and a 226-amino-acid catalytic domain. A second cDNA, encoding a serine proteinase 90% identical with sMCP-1, was also cloned and named sMCP-3. Molecular models were constructed for both enzymes using coordinates for the refined X-ray structures of human cathepsin G, chymase and rat mast-cell proteinase-2. The model for sMCP-1 suggests that the acidic Asp-226 side chain extends into the substrate-binding pocket, hydrogen-bonding with Ser-190 on the opposite side and bisecting the pocket. The location of an acidic moiety in this position would favour interaction with basic substrate residues and binding of aromatic residues is rationalized by interaction of the positively charged equatorial plane with Asp-226. The balance between chymotryptic and tryptic activities of sMCP-1 was found to be sensitive to salt concentration, with increasing univalent cation concentration favouring chymotryptic activity relative to the tryptic. Using a peptide substrate representing residues 36-59 of the human thrombin receptor, increasing salt concentration favoured cleavage at Phe-43 rather than at Arg-41.

Full Text

The Full Text of this article is available as a PDF (598.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey P. N., Yin F. H., Leder P. Cloning of the mast cell protease, RMCP II. Evidence for cell-specific expression and a multi-gene family. J Biol Chem. 1987 Apr 15;262(11):5377–5384. [PubMed] [Google Scholar]
  2. Brown J. R., Hartley B. S. Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. Biochem J. 1966 Oct;101(1):214–228. doi: 10.1042/bj1010214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caputo A., James M. N., Powers J. C., Hudig D., Bleackley R. C. Conversion of the substrate specificity of mouse proteinase granzyme B. Nat Struct Biol. 1994 Jun;1(6):364–367. doi: 10.1038/nsb0694-364. [DOI] [PubMed] [Google Scholar]
  4. Caughey G. H., Raymond W. W., Vanderslice P. Dog mast cell chymase: molecular cloning and characterization. Biochemistry. 1990 May 29;29(21):5166–5171. doi: 10.1021/bi00473a024. [DOI] [PubMed] [Google Scholar]
  5. Caughey G. H., Zerweck E. H., Vanderslice P. Structure, chromosomal assignment, and deduced amino acid sequence of a human gene for mast cell chymase. J Biol Chem. 1991 Jul 15;266(20):12956–12963. [PubMed] [Google Scholar]
  6. Chandrasekharan U. M., Sanker S., Glynias M. J., Karnik S. S., Husain A. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science. 1996 Jan 26;271(5248):502–505. doi: 10.1126/science.271.5248.502. [DOI] [PubMed] [Google Scholar]
  7. Fujinaga M., Sielecki A. R., Read R. J., Ardelt W., Laskowski M., Jr, James M. N. Crystal and molecular structures of the complex of alpha-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8 A resolution. J Mol Biol. 1987 May 20;195(2):397–418. doi: 10.1016/0022-2836(87)90659-0. [DOI] [PubMed] [Google Scholar]
  8. Gilljam H., Ellin A., Strandvik B. Increased bronchial chloride concentration in cystic fibrosis. Scand J Clin Lab Invest. 1989 Apr;49(2):121–124. doi: 10.3109/00365518909105409. [DOI] [PubMed] [Google Scholar]
  9. Heusel J. W., Scarpati E. M., Jenkins N. A., Gilbert D. J., Copeland N. G., Shapiro S. D., Ley T. J. Molecular cloning, chromosomal location, and tissue-specific expression of the murine cathepsin G gene. Blood. 1993 Mar 15;81(6):1614–1623. [PubMed] [Google Scholar]
  10. Hof P., Mayr I., Huber R., Korzus E., Potempa J., Travis J., Powers J. C., Bode W. The 1.8 A crystal structure of human cathepsin G in complex with Suc-Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite specificities. EMBO J. 1996 Oct 15;15(20):5481–5491. [PMC free article] [PubMed] [Google Scholar]
  11. Huntley J. F., Newlands G. F., Jackson F., Miller H. R. The influence of challenge dose, duration of immunity, or steroid treatment on mucosal mast cells and on the distribution of sheep mast cell proteinase in Haemonchus-infected sheep. Parasite Immunol. 1992 Jul;14(4):429–440. doi: 10.1111/j.1365-3024.1992.tb00017.x. [DOI] [PubMed] [Google Scholar]
  12. Janoff A. Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis. 1985 Aug;132(2):417–433. doi: 10.1164/arrd.1985.132.2.417. [DOI] [PubMed] [Google Scholar]
  13. Macaldowie C. N., Huntley J. F., Mackellar A., McInnes C., Haig D. M. The effects of recombinant ovine interleukin-3 and recombinant ovine stem cell factor on the growth and mediator expression of caprine and ovine bone marrow-derived mast cells. Vet Immunol Immunopathol. 1997 Dec 12;60(1-2):97–110. doi: 10.1016/s0165-2427(97)00086-x. [DOI] [PubMed] [Google Scholar]
  14. Macaldowie C. N., Mackellar A., Huntley J. F. The isolation and purification of a dual specific mast cell-derived protease from parasitised caprine jejunal tissue. Res Vet Sci. 1998 Jan-Feb;64(1):17–24. doi: 10.1016/s0034-5288(98)90109-6. [DOI] [PubMed] [Google Scholar]
  15. McEuen A. R., Sharma B., Walls A. F. Regulation of the activity of human chymase during storage and release from mast cells: the contributions of inorganic cations, pH, heparin and histamine. Biochim Biophys Acta. 1995 Jun 20;1267(2-3):115–121. doi: 10.1016/0167-4889(95)00066-2. [DOI] [PubMed] [Google Scholar]
  16. McGrath M. E., Erpel T., Bystroff C., Fletterick R. J. Macromolecular chelation as an improved mechanism of protease inhibition: structure of the ecotin-trypsin complex. EMBO J. 1994 Apr 1;13(7):1502–1507. doi: 10.1002/j.1460-2075.1994.tb06411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGrath M. E., Mirzadegan T., Schmidt B. F. Crystal structure of phenylmethanesulfonyl fluoride-treated human chymase at 1.9 A. Biochemistry. 1997 Nov 25;36(47):14318–14324. doi: 10.1021/bi971403n. [DOI] [PubMed] [Google Scholar]
  18. McNeil H. P., Austen K. F., Somerville L. L., Gurish M. F., Stevens R. L. Molecular cloning of the mouse mast cell protease-5 gene. A novel secretory granule protease expressed early in the differentiation of serosal mast cells. J Biol Chem. 1991 Oct 25;266(30):20316–20322. [PubMed] [Google Scholar]
  19. Molino M., Blanchard N., Belmonte E., Tarver A. P., Abrams C., Hoxie J. A., Cerletti C., Brass L. F. Proteolysis of the human platelet and endothelial cell thrombin receptor by neutrophil-derived cathepsin G. J Biol Chem. 1995 May 12;270(19):11168–11175. doi: 10.1074/jbc.270.19.11168. [DOI] [PubMed] [Google Scholar]
  20. Odake S., Kam C. M., Narasimhan L., Poe M., Blake J. T., Krahenbuhl O., Tschopp J., Powers J. C. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry. 1991 Feb 26;30(8):2217–2227. doi: 10.1021/bi00222a027. [DOI] [PubMed] [Google Scholar]
  21. Parry M. A., Myles T., Tschopp J., Stone S. R. Cleavage of the thrombin receptor: identification of potential activators and inactivators. Biochem J. 1996 Nov 15;320(Pt 1):335–341. doi: 10.1042/bj3200335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pemberton A. D., Belham C. M., Huntley J. F., Plevin R., Miller H. R. Sheep mast cell proteinase-1, a serine proteinase with both tryptase- and chymase-like properties, is inhibited by plasma proteinase inhibitors and is mitogenic for bovine pulmonary artery fibroblasts. Biochem J. 1997 May 1;323(Pt 3):719–725. doi: 10.1042/bj3230719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pemberton A. D., Huntley J. F., Miller H. R. Sheep mast cell proteinase-1: characterization as a member of a new class of dual-specific ruminant chymases. Biochem J. 1997 Feb 1;321(Pt 3):665–670. doi: 10.1042/bj3210665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perona J. J., Craik C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 1995 Mar;4(3):337–360. doi: 10.1002/pro.5560040301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perona J. J., Tsu C. A., McGrath M. E., Craik C. S., Fletterick R. J. Relocating a negative charge in the binding pocket of trypsin. J Mol Biol. 1993 Apr 5;230(3):934–949. doi: 10.1006/jmbi.1993.1211. [DOI] [PubMed] [Google Scholar]
  26. Powers J. C., Tanaka T., Harper J. W., Minematsu Y., Barker L., Lincoln D., Crumley K. V., Fraki J. E., Schechter N. M., Lazarus G. G. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry. 1985 Apr 9;24(8):2048–2058. doi: 10.1021/bi00329a037. [DOI] [PubMed] [Google Scholar]
  27. Remington S. J., Woodbury R. G., Reynolds R. A., Matthews B. W., Neurath H. The structure of rat mast cell protease II at 1.9-A resolution. Biochemistry. 1988 Oct 18;27(21):8097–8105. doi: 10.1021/bi00421a019. [DOI] [PubMed] [Google Scholar]
  28. Salvesen G., Farley D., Shuman J., Przybyla A., Reilly C., Travis J. Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry. 1987 Apr 21;26(8):2289–2293. doi: 10.1021/bi00382a032. [DOI] [PubMed] [Google Scholar]
  29. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  30. Schmid J., Weissmann C. Induction of mRNA for a serine protease and a beta-thromboglobulin-like protein in mitogen-stimulated human leukocytes. J Immunol. 1987 Jul 1;139(1):250–256. [PubMed] [Google Scholar]
  31. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  32. Serafin W. E., Sullivan T. P., Conder G. A., Ebrahimi A., Marcham P., Johnson S. S., Austen K. F., Reynolds D. S. Cloning of the cDNA and gene for mouse mast cell protease 4. Demonstration of its late transcription in mast cell subclasses and analysis of its homology to subclass-specific neutral proteases of the mouse and rat. J Biol Chem. 1991 Jan 25;266(3):1934–1941. [PubMed] [Google Scholar]
  33. Smyth M. J., O'Connor M. D., Trapani J. A. Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. J Leukoc Biol. 1996 Nov;60(5):555–562. doi: 10.1002/jlb.60.5.555. [DOI] [PubMed] [Google Scholar]
  34. Tanaka T., Minematsu Y., Reilly C. F., Travis J., Powers J. C. Human leukocyte cathepsin G. Subsite mapping with 4-nitroanilides, chemical modification, and effect of possible cofactors. Biochemistry. 1985 Apr 9;24(8):2040–2047. doi: 10.1021/bi00329a036. [DOI] [PubMed] [Google Scholar]
  35. Urata H., Kinoshita A., Perez D. M., Misono K. S., Bumpus F. M., Graham R. M., Husain A. Cloning of the gene and cDNA for human heart chymase. J Biol Chem. 1991 Sep 15;266(26):17173–17179. [PubMed] [Google Scholar]
  36. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  37. Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol. 1997 Mar;61(3):233–245. doi: 10.1002/jlb.61.3.233. [DOI] [PubMed] [Google Scholar]
  38. Zamolodchikova T. S., Sokolova E. A., Alexandrov S. L., Mikhaleva I. I., Prudchenko I. A., Morozov I. A., Kononenko N. V., Mirgorodskaya O. A., Da U., Larionova N. I. Subcellular localization, substrate specificity and crystallization of duodenase, a potential activator of enteropeptidase. Eur J Biochem. 1997 Oct 15;249(2):612–621. doi: 10.1111/j.1432-1033.1997.t01-1-00612.x. [DOI] [PubMed] [Google Scholar]
  39. Zamolodchikova T. S., Vorotyntseva T. I., Antonov V. K. Duodenase, a new serine protease of unusual specificity from bovine duodenal mucosa. Purification and properties. Eur J Biochem. 1995 Feb 1;227(3):866–872. doi: 10.1111/j.1432-1033.1995.tb20212.x. [DOI] [PubMed] [Google Scholar]
  40. Zamolodchikova T. S., Vorotyntseva T. I., Nazimov I. V., Grishina G. A. Duodenase, a new serine protease of unusual specificity from bovine duodenal mucosa. Primary structure of the enzyme. Eur J Biochem. 1995 Feb 1;227(3):873–879. doi: 10.1111/j.1432-1033.1995.tb20213.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES