Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 1;333(Pt 3):817–823. doi: 10.1042/bj3330817

Synthesis of calbindin-D28K during mineralization in human bone marrow stromal cells.

C Faucheux 1, R Bareille 1, J Amedee 1
PMCID: PMC1219649  PMID: 9677345

Abstract

1alpha,25-Dihydroxyvitamin D3 [1,25(OH)2D3] is known to modulate Ca2+ metabolism in several cell types. Vitamin-D-dependent calcium binding proteins such as calbindin-D28K (28 kDa calcium binding proteins) have been shown to be regulated by 1,25(OH)2D3 but the mechanisms controlling calbindin synthesis are still poorly understood in human osteoblast cell culture models. The human bone marrow stromal cells (HBMSC) described in this paper developed a calcified matrix, expressed osteocalcin (OC), osteopontin (OP) and responded to 1,25(OH)2D3. The expression of vitamin D receptor mRNA was demonstrated by reverse transcription-PCR. Calbindin-D28K protein was identified only in cells arising from the sixth subculture, which exhibited a calcified matrix and all of the osteoblastic markers, e.g. OC and OP. It was demonstrated by dot-immunodetection using immunological probes, and by in situ hybridization using labelled cDNA probes. Moreover, vitamin D3 enhanced calbindin-D28K synthesis as well as OC synthesis and alkaline phosphatase activity. Uptake of 45Ca induced into the matrix by 1,25(OH)2D3 supports the hypothesis that the calcium-enriched matrix could trap calbindin-D proteins. In conclusion, the studies in vitro described in the present paper indicate, for the first time, a possible role of calbindin-D28K in mineralized matrix formation in HBMSC.

Full Text

The Full Text of this article is available as a PDF (444.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERMAN G. A. Substituted naphthol AS phosphate derivatives for the localization of leukocyte alkaline phosphatase activity. Lab Invest. 1962 Jul;11:563–567. [PubMed] [Google Scholar]
  2. Ashton B. A., Abdullah F., Cave J., Williamson M., Sykes B. C., Couch M., Poser J. W. Characterization of cells with high alkaline phosphatase activity derived from human bone and marrow: preliminary assessment of their osteogenicity. Bone. 1985;6(5):313–319. doi: 10.1016/8756-3282(85)90321-7. [DOI] [PubMed] [Google Scholar]
  3. Baker A. R., McDonnell D. P., Hughes M., Crisp T. M., Mangelsdorf D. J., Haussler M. R., Pike J. W., Shine J., O'Malley B. W. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1988 May;85(10):3294–3298. doi: 10.1073/pnas.85.10.3294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balmain N. Calbindin-D9k. A vitamin-D-dependent, calcium-binding protein in mineralized tissues. Clin Orthop Relat Res. 1991 Apr;(265):265–276. [PubMed] [Google Scholar]
  5. Balmain N., Hotton D., Cuisinier-Gleizes P., Mathieu H. Immunoreactive calbindin-D9K localization in matrix vesicle-initiated calcification in rat epiphyseal cartilage: an immunoelectron microscope study. J Bone Miner Res. 1989 Aug;4(4):565–575. doi: 10.1002/jbmr.5650040416. [DOI] [PubMed] [Google Scholar]
  6. Baran D. T. Nongenomic actions of the steroid hormone 1 alpha,25-dihydroxyvitamin D3. J Cell Biochem. 1994 Nov;56(3):303–306. doi: 10.1002/jcb.240560305. [DOI] [PubMed] [Google Scholar]
  7. Bellido T., Girasole G., Passeri G., Yu X. P., Mocharla H., Jilka R. L., Notides A., Manolagas S. C. Demonstration of estrogen and vitamin D receptors in bone marrow-derived stromal cells: up-regulation of the estrogen receptor by 1,25-dihydroxyvitamin-D3. Endocrinology. 1993 Aug;133(2):553–562. doi: 10.1210/endo.133.2.8393768. [DOI] [PubMed] [Google Scholar]
  8. Bellows C. G., Aubin J. E., Heersche J. N. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 1991 Jul;14(1):27–40. doi: 10.1016/0169-6009(91)90100-e. [DOI] [PubMed] [Google Scholar]
  9. Berdal A., Hotton D., Saffar J. L., Thomasset M., Nanci A. Calbindin-D9k and calbindin-D28k expression in rat mineralized tissues in vivo. J Bone Miner Res. 1996 Jun;11(6):768–779. doi: 10.1002/jbmr.5650110608. [DOI] [PubMed] [Google Scholar]
  10. Brun P., Dupret J. M., Perret C., Thomasset M., Mathieu H. Vitamin D-dependent calcium-binding proteins (CaBPs) in human fetuses: comparative distribution of 9K CaBP mRNA and 28K CaBP during development. Pediatr Res. 1987 Apr;21(4):362–367. doi: 10.1203/00006450-198704000-00008. [DOI] [PubMed] [Google Scholar]
  11. Chen T. L., Cone C. M., Morey-Holton E., Feldman D. 1 alpha,25-dihydroxyvitamin D3 receptors in cultured rat osteoblast-like cells. Glucocorticoid treatment increases receptor content. J Biol Chem. 1983 Apr 10;258(7):4350–4355. [PubMed] [Google Scholar]
  12. Christakos S., Gabrielides C., Rhoten W. B. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev. 1989 Feb;10(1):3–26. doi: 10.1210/edrv-10-1-3. [DOI] [PubMed] [Google Scholar]
  13. Clemens T. L., McGlade S. A., Garrett K. P., Horiuchi N., Hendy G. N. Tissue-specific regulation of avian vitamin D-dependent calcium-binding protein 28-kDa mRNA by 1,25-dihydroxyvitamin D3. J Biol Chem. 1988 Sep 15;263(26):13112–13116. [PubMed] [Google Scholar]
  14. Delorme A. C., Danan J. L., Acker M. G., Ripoche M. A., Mathieu H. In rat uterus 17 beta-estradiol stimulates a calcium-binding protein similar to the duodenal vitamin D-dependent calcium-binding protein. Endocrinology. 1983 Oct;113(4):1340–1347. doi: 10.1210/endo-113-4-1340. [DOI] [PubMed] [Google Scholar]
  15. Enomoto H., Hendy G. N., Andrews G. K., Clemens T. L. Regulation of avian calbindin-D28K gene expression in primary chick kidney cells: importance of posttranscriptional mechanisms and calcium ion concentration. Endocrinology. 1992 Jun;130(6):3467–3474. doi: 10.1210/endo.130.6.1375904. [DOI] [PubMed] [Google Scholar]
  16. Feher J. J., Fullmer C. S. Facilitated diffusion of calcium by calcium-binding protein: its role in intestinal calcium absorption. Prog Clin Biol Res. 1988;252:121–126. [PubMed] [Google Scholar]
  17. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haussler M. R. Vitamin D receptors: nature and function. Annu Rev Nutr. 1986;6:527–562. doi: 10.1146/annurev.nu.06.070186.002523. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Liel Y., Kraus S., Levy J., Shany S. Evidence that estrogens modulate activity and increase the number of 1,25-dihydroxyvitamin D receptors in osteoblast-like cells (ROS 17/2.8). Endocrinology. 1992 May;130(5):2597–2601. doi: 10.1210/endo.130.5.1315250. [DOI] [PubMed] [Google Scholar]
  21. Mahonen A., Pirskanen A., Keinänen R., Mäenpä P. H. Effect of 1,25(OH)2D3 on its receptor mRNA levels and osteocalcin synthesis in human osteosarcoma cells. Biochim Biophys Acta. 1990 Jan 30;1048(1):30–37. doi: 10.1016/0167-4781(90)90018-w. [DOI] [PubMed] [Google Scholar]
  22. Majeska R. J., Rodan G. A. The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem. 1982 Apr 10;257(7):3362–3365. [PubMed] [Google Scholar]
  23. Malaval L., Modrowski D., Gupta A. K., Aubin J. E. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol. 1994 Mar;158(3):555–572. doi: 10.1002/jcp.1041580322. [DOI] [PubMed] [Google Scholar]
  24. Mayur N., Lewis S., Catherwood B. D., Nanes M. S. Tumor necrosis factor alpha decreases 1,25-dihydroxyvitamin D3 receptors in osteoblastic ROS 17/2.8 cells. J Bone Miner Res. 1993 Aug;8(8):997–1003. doi: 10.1002/jbmr.5650080813. [DOI] [PubMed] [Google Scholar]
  25. Minghetti P. P., Norman A. W. 1,25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J. 1988 Dec;2(15):3043–3053. doi: 10.1096/fasebj.2.15.2847948. [DOI] [PubMed] [Google Scholar]
  26. Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B., Stein G. S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990 Jun;143(3):420–430. doi: 10.1002/jcp.1041430304. [DOI] [PubMed] [Google Scholar]
  27. Perret C., Desplan C., Brehier A., Thomasset M. Characterisation of rat 9-kDa cholecalcin (CaBP) messenger RNA using a complementary DNA. Absence of homology with 28-kDa cholecalcin mRNA. Eur J Biochem. 1985 Apr 1;148(1):61–66. doi: 10.1111/j.1432-1033.1985.tb08807.x. [DOI] [PubMed] [Google Scholar]
  28. Rao L. G., Wylie J. N., Kung Sutherland M. S., Murray T. M. 17 beta-oestradiol enhances the stimulatory effect of 1,25-dihydroxyvitamin D3 on alkaline phosphatase activity in human osteosarcoma SaOS-2 cells in a differentiation-dependent manner. J Endocrinol. 1996 Jan;148(1):181–187. doi: 10.1677/joe.0.1480181. [DOI] [PubMed] [Google Scholar]
  29. Spiess Y. H., Price P. A., Deftos J. L., Manolagas S. C. Phenotype-associated changes in the effects of 1,25-dihydroxyvitamin D3 on alkaline phosphatase and bone GLA-protein of rat osteoblastic cells. Endocrinology. 1986 Apr;118(4):1340–1346. doi: 10.1210/endo-118-4-1340. [DOI] [PubMed] [Google Scholar]
  30. St-Arnaud R., Prud'homme J., Leung-Hagesteijn C., Dedhar S. Constitutive expression of calreticulin in osteoblasts inhibits mineralization. J Cell Biol. 1995 Dec;131(5):1351–1359. doi: 10.1083/jcb.131.5.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stein G. S., Lian J. B., Stein J. L., Van Wijnen A. J., Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol Rev. 1996 Apr;76(2):593–629. doi: 10.1152/physrev.1996.76.2.593. [DOI] [PubMed] [Google Scholar]
  32. Suzuki S., Koga M., Takaoka K., Ono K., Sato B. Effects of retinoic acid on steroid and vitamin D3 receptors in cultured mouse osteosarcoma cells. Bone. 1993;14(1):7–12. doi: 10.1016/8756-3282(93)90249-a. [DOI] [PubMed] [Google Scholar]
  33. Vilamitjana-Amedee J., Bareille R., Rouais F., Caplan A. I., Harmand M. F. Human bone marrow stromal cells express an osteoblastic phenotype in culture. In Vitro Cell Dev Biol Anim. 1993 Sep;29A(9):699–707. doi: 10.1007/BF02631426. [DOI] [PubMed] [Google Scholar]
  34. Wang Y. Z., Li H., Bruns M. E., Uskokovic M., Truitt G. A., Horst R., Reinhardt T., Christakos S. Effect of 1,25,28-trihydroxyvitamin D2 and 1,24,25-trihydroxyvitamin D3 on intestinal calbindin-D9K mRNA and protein: is there a correlation with intestinal calcium transport? J Bone Miner Res. 1993 Dec;8(12):1483–1490. doi: 10.1002/jbmr.5650081211. [DOI] [PubMed] [Google Scholar]
  35. Wheeler D. G., Horsford J., Michalak M., White J. H., Hendy G. N. Calreticulin inhibits vitamin D3 signal transduction. Nucleic Acids Res. 1995 Aug 25;23(16):3268–3274. doi: 10.1093/nar/23.16.3268. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES