Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):23–29. doi: 10.1042/bj3340023

Role for protein phosphatases in the cell-cycle-regulated phosphorylation of stathmin.

S J Mistry 1, H C Li 1, G F Atweh 1
PMCID: PMC1219656  PMID: 9693097

Abstract

Stathmin is a major cytosolic phosphoprotein that regulates microtubule dynamics during the assembly of the mitotic spindle. The activity of stathmin itself is regulated by changes in its state of phosphorylation during the transition from interphase to metaphase. For a better understanding of the regulation of stathmin activity during the cell cycle, we explored the mechanism(s) responsible for the decrease in the level of phosphorylation of stathmin as cells complete mitosis and enter a new G1 phase. We show that stathmin mRNA and protein are expressed constitutively throughout the different phases of the cell cycle. This suggests that the non-phosphorylated stathmin that predominates during G1 is not generated by degradation of phosphorylated stathmin in mitosis and synthesis of new unphosphorylated stathmin as cells enter a new G1 phase. This suggested that protein phosphatases might be responsible for dephosphorylating stathmin as cells enter a new cell cycle. Okadaic acid-mediated inhibition of protein phosphatases in vivo showed a major increase in the level of phosphorylation of stathmin. Dephosphorylation studies in vitro showed differential patterns of site-specific dephosphorylaton of stathmin to protein phosphatase type 1, protein phosphatase type 2A and protein phosphatase type 2B. Thus stathmin might be a target for okadaic acid-sensitive protein phosphatase(s), and its activity in eukaryotic cells might be modulated by the sequential activity of specific protein kinases and phosphatases.

Full Text

The Full Text of this article is available as a PDF (366.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt-Jovin D. J., Jovin T. M. Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem. 1977 Jul;25(7):585–589. doi: 10.1177/25.7.70450. [DOI] [PubMed] [Google Scholar]
  2. Belmont L. D., Mitchison T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell. 1996 Feb 23;84(4):623–631. doi: 10.1016/s0092-8674(00)81037-5. [DOI] [PubMed] [Google Scholar]
  3. Beretta L., Dobránsky T., Sobel A. Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2. J Biol Chem. 1993 Sep 25;268(27):20076–20084. [PubMed] [Google Scholar]
  4. Brattsand G., Marklund U., Nylander K., Roos G., Gullberg M. Cell-cycle-regulated phosphorylation of oncoprotein 18 on Ser16, Ser25 and Ser38. Eur J Biochem. 1994 Mar 1;220(2):359–368. doi: 10.1111/j.1432-1033.1994.tb18632.x. [DOI] [PubMed] [Google Scholar]
  5. Brattsand G., Roos G., Marklund U., Ueda H., Landberg G., Nånberg E., Sideras P., Gullberg M. Quantitative analysis of the expression and regulation of an activation-regulated phosphoprotein (oncoprotein 18) in normal and neoplastic cells. Leukemia. 1993 Apr;7(4):569–579. [PubMed] [Google Scholar]
  6. Ghosh P. K., Anderson J., Cohen N., Takeshita K., Atweh G. F., Lebowitz P. Expression of the leukemia-associated gene, p18, in normal and malignant tissues; inactivation of expression in a patient with cleaved B cell lymphoma/leukemia. Oncogene. 1993 Oct;8(10):2869–2872. [PubMed] [Google Scholar]
  7. Hanash S. M., Strahler J. R., Kuick R., Chu E. H., Nichols D. Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem. 1988 Sep 15;263(26):12813–12815. [PubMed] [Google Scholar]
  8. Hardie D. G., Haystead T. A., Sim A. T. Use of okadaic acid to inhibit protein phosphatases in intact cells. Methods Enzymol. 1991;201:469–476. doi: 10.1016/0076-6879(91)01042-z. [DOI] [PubMed] [Google Scholar]
  9. Jeha S., Luo X. N., Beran M., Kantarjian H., Atweh G. F. Antisense RNA inhibition of phosphoprotein p18 expression abrogates the transformed phenotype of leukemic cells. Cancer Res. 1996 Mar 15;56(6):1445–1450. [PubMed] [Google Scholar]
  10. Larsson N., Marklund U., Gradin H. M., Brattsand G., Gullberg M. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol. 1997 Sep;17(9):5530–5539. doi: 10.1128/mcb.17.9.5530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li H. C. Activation of brain calcineurin phosphatase towards nonprotein phosphoesters by Ca2+, calmodulin, and Mg2+. J Biol Chem. 1984 Jul 25;259(14):8801–8807. [PubMed] [Google Scholar]
  12. Li H. C., Hsiao K. J., Chan W. W. Purification and properties of phosphoprotein phosphatases with different substrate and divalent cation specificities from canine heart. Eur J Biochem. 1978 Mar;84(1):215–225. doi: 10.1111/j.1432-1033.1978.tb12159.x. [DOI] [PubMed] [Google Scholar]
  13. Li H. C., Hsiao K. J., Sampathkumar S. Characterization of a novel alkaline phosphatase activity which co-purifies with a phosphorylase (phosphoprotein) phosphatase of Mr = 35,000 cardiac muscle. J Biol Chem. 1979 May 10;254(9):3368–3374. [PubMed] [Google Scholar]
  14. Luo X. N., Arcasoy M. O., Brickner H. E., Mistry S., Schechter A. D., Atweh G. F. Regulated expression of p18, a major phosphoprotein of leukemic cells. J Biol Chem. 1991 Nov 5;266(31):21004–21010. [PubMed] [Google Scholar]
  15. Luo X. N., Mookerjee B., Ferrari A., Mistry S., Atweh G. F. Regulation of phosphoprotein p18 in leukemic cells. Cell cycle regulated phosphorylation by p34cdc2 kinase. J Biol Chem. 1994 Apr 8;269(14):10312–10318. [PubMed] [Google Scholar]
  16. Marklund U., Brattsand G., Shingler V., Gullberg M. Serine 25 of oncoprotein 18 is a major cytosolic target for the mitogen-activated protein kinase. J Biol Chem. 1993 Jul 15;268(20):15039–15047. [PubMed] [Google Scholar]
  17. Marklund U., Larsson N., Gradin H. M., Brattsand G., Gullberg M. Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J. 1996 Oct 1;15(19):5290–5298. [PMC free article] [PubMed] [Google Scholar]
  18. Mawal-Dewan M., Henley J., Van de Voorde A., Trojanowski J. Q., Lee V. M. The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J Biol Chem. 1994 Dec 9;269(49):30981–30987. [PubMed] [Google Scholar]
  19. Melander Gradin H., Marklund U., Larsson N., Chatila T. A., Gullberg M. Regulation of microtubule dynamics by Ca2+/calmodulin-dependent kinase IV/Gr-dependent phosphorylation of oncoprotein 18. Mol Cell Biol. 1997 Jun;17(6):3459–3467. doi: 10.1128/mcb.17.6.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Melhem R. F., Zhu X. X., Hailat N., Strahler J. R., Hanash S. M. Characterization of the gene for a proliferation-related phosphoprotein (oncoprotein 18) expressed in high amounts in acute leukemia. J Biol Chem. 1991 Sep 25;266(27):17747–17753. [PubMed] [Google Scholar]
  21. Mistry S., Luo X. N., Atweh G. F. Transcriptional regulation of phosphoprotein p18 during monocytic differentiation of U937 leukemic cells. Cell Mol Biol Res. 1995;41(2):103–110. [PubMed] [Google Scholar]
  22. Mumby M. C., Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993 Oct;73(4):673–699. doi: 10.1152/physrev.1993.73.4.673. [DOI] [PubMed] [Google Scholar]
  23. Rusnak F., Beressi A. H., Haddy A., Tefferi A. Calcineurin protein phosphatase activity in peripheral blood lymphocytes. Bone Marrow Transplant. 1996 Mar;17(3):309–313. [PubMed] [Google Scholar]
  24. Schubart U. K., Xu J., Fan W., Cheng G., Goldstein H., Alpini G., Shafritz D. A., Amat J. A., Farooq M., Norton W. T. Widespread differentiation stage-specific expression of the gene encoding phosphoprotein p19 (metablastin) in mammalian cells. Differentiation. 1992 Sep;51(1):21–32. doi: 10.1111/j.1432-0436.1992.tb00676.x. [DOI] [PubMed] [Google Scholar]
  25. Sobel A. Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci. 1991 Aug;16(8):301–305. doi: 10.1016/0968-0004(91)90123-d. [DOI] [PubMed] [Google Scholar]
  26. Sánchez C., Tompa P., Szücs K., Friedrich P., Avila J. Phosphorylation and dephosphorylation in the proline-rich C-terminal domain of microtubule-associated protein 2. Eur J Biochem. 1996 Nov 1;241(3):765–771. doi: 10.1111/j.1432-1033.1996.00765.x. [DOI] [PubMed] [Google Scholar]
  27. Thompson C. B., Challoner P. B., Neiman P. E., Groudine M. Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. 1985 Mar 28-Apr 3Nature. 314(6009):363–366. doi: 10.1038/314363a0. [DOI] [PubMed] [Google Scholar]
  28. Ulloa L., Dombrádi V., Díaz-Nido J., Szücs K., Gergely P., Friedrich P., Avila J. Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B. FEBS Lett. 1993 Sep 6;330(1):85–89. doi: 10.1016/0014-5793(93)80925-k. [DOI] [PubMed] [Google Scholar]
  29. Van Dolah F. M., Ramsdell J. S. Okadaic acid inhibits a protein phosphatase activity involved in formation of the mitotic spindle of GH4 rat pituitary cells. J Cell Physiol. 1992 Jul;152(1):190–198. doi: 10.1002/jcp.1041520124. [DOI] [PubMed] [Google Scholar]
  30. Zheng B., Woo C. F., Kuo J. F. Mitotic arrest and enhanced nuclear protein phosphorylation in human leukemia K562 cells by okadaic acid, a potent protein phosphatase inhibitor and tumor promoter. J Biol Chem. 1991 Jun 5;266(16):10031–10034. [PubMed] [Google Scholar]
  31. Zhu X. X., Kozarsky K., Strahler J. R., Eckerskorn C., Lottspeich F., Melhem R., Lowe J., Fox D. A., Hanash S. M., Atweh G. F. Molecular cloning of a novel human leukemia-associated gene. Evidence of conservation in animal species. J Biol Chem. 1989 Aug 25;264(24):14556–14560. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES