Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):63–70. doi: 10.1042/bj3340063

Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile.

F Xu 1, R M Berka 1, J A Wahleithner 1, B A Nelson 1, J R Shuster 1, S H Brown 1, A E Palmer 1, E I Solomon 1
PMCID: PMC1219662  PMID: 9693103

Abstract

A Myceliophthora thermophila laccase and a Rhizoctonia solani laccase were mutated on a pentapeptide segment believed to be near the type-1 Cu site. The mutation L513F in Myceliophthora laccase and the mutation L470F in Rhizoctonia laccase took place at a position corresponding to the type-1 Cu axial methionine (M517) ligand in Zucchini ascorbate oxidase. The triple mutations V509L,S510E,G511A in Myceliophthora laccase and L466V,E467S,A468G in Rhizoctonia laccase involved a sequence segment whose homologue in ascorbate oxidase is flanked by the M517 and a type-1 Cu-ligating histidine (H512). The single mutation did not yield significant changes in the enzymic properties (including any significant increase in the redox potential of the type-1 Cu). In contrast, the triple mutation resulted in several significant changes. In comparison with the wild type, the Rhizoctonia and Myceliophthora laccase triple mutants had a phenol-oxidase activity whose pH optimum shifted 1 unit lower and higher, respectively. Although the redox potentials were not significantly altered, the Km, kcat and fluoride inhibition of the laccases were greatly changed by the mutations. The observed effects are interpreted as possible mutation-induced structural perturbations on the molecular recognition between the reducing substrate and laccase and on the electron transfer from the substrate to the type-1 Cu centre.

Full Text

The Full Text of this article is available as a PDF (457.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berka R. M., Schneider P., Golightly E. J., Brown S. H., Madden M., Brown K. M., Halkier T., Mondorf K., Xu F. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol. 1997 Aug;63(8):3151–3157. doi: 10.1128/aem.63.8.3151-3157.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chang T. K., Iverson S. A., Rodrigues C. G., Kiser C. N., Lew A. Y., Germanas J. P., Richards J. H. Gene synthesis, expression, and mutagenesis of the blue copper proteins azurin and plastocyanin. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1325–1329. doi: 10.1073/pnas.88.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ducros V., Brzozowski A. M., Wilson K. S., Brown S. H., Ostergaard P., Schneider P., Yaver D. S., Pedersen A. H., Davies G. J. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nat Struct Biol. 1998 Apr;5(4):310–316. doi: 10.1038/nsb0498-310. [DOI] [PubMed] [Google Scholar]
  4. FELSENFELD G. The determination of cuprous ion in copper proteins. Arch Biochem Biophys. 1960 Apr;87:247–251. doi: 10.1016/0003-9861(60)90168-5. [DOI] [PubMed] [Google Scholar]
  5. Farver O., Skov L. K., Pascher T., Karlsson B. G., Nordling M., Lundberg L. G., Vänngård T., Pecht I. Intramolecular electron transfer in single-site-mutated azurins. Biochemistry. 1993 Jul 20;32(28):7317–7322. doi: 10.1021/bi00079a031. [DOI] [PubMed] [Google Scholar]
  6. Jönsson L., Sjöström K., Häggström I., Nyman P. O. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta. 1995 Sep 6;1251(2):210–215. doi: 10.1016/0167-4838(95)00104-3. [DOI] [PubMed] [Google Scholar]
  7. Messerschmidt A., Ladenstein R., Huber R., Bolognesi M., Avigliano L., Petruzzelli R., Rossi A., Finazzi-Agró A. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J Mol Biol. 1992 Mar 5;224(1):179–205. doi: 10.1016/0022-2836(92)90583-6. [DOI] [PubMed] [Google Scholar]
  8. Messerschmidt A., Prade L., Kroes S. J., Sanders-Loehr J., Huber R., Canters G. W. Rack-induced metal binding vs. flexibility: Met121His azurin crystal structures at different pH. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3443–3448. doi: 10.1073/pnas.95.7.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Murphy L. M., Strange R. W., Karlsson B. G., Lundberg L. G., Pascher T., Reinhammar B., Hasnain S. S. Structural characterization of azurin from Pseudomonas aeruginosa and some of its methionine-121 mutants. Biochemistry. 1993 Mar 2;32(8):1965–1975. doi: 10.1021/bi00059a013. [DOI] [PubMed] [Google Scholar]
  10. Murphy M. E., Turley S., Kukimoto M., Nishiyama M., Horinouchi S., Sasaki H., Tanokura M., Adman E. T. Structure of Alcaligenes faecalis nitrite reductase and a copper site mutant, M150E, that contains zinc. Biochemistry. 1995 Sep 26;34(38):12107–12117. doi: 10.1021/bi00038a003. [DOI] [PubMed] [Google Scholar]
  11. Nishiyama M., Suzuki J., Ohnuki T., Chang H. C., Horinouchi S., Turley S., Adman E. T., Beppu T. Site-directed mutagenesis of pseudoazurin from Alcaligenes faecalis S-6; Pro80Ala mutant exhibits marked increase in reduction potential. Protein Eng. 1992 Mar;5(2):177–184. doi: 10.1093/protein/5.2.177. [DOI] [PubMed] [Google Scholar]
  12. Nunzi F., Guerlesquin F., Shepard W., Guigliarelli B., Bruschi M. Active site geometry in the high oxido-reduction potential rusticyanin from Thiobacillus ferrooxidans. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1655–1662. doi: 10.1006/bbrc.1994.2376. [DOI] [PubMed] [Google Scholar]
  13. Pascher T., Bergström J., Malmström B. G., Vänngård T., Lundberg L. G. Modification of the electron-transfer sites of Pseudomonas aeruginosa azurin by site-directed mutagenesis. FEBS Lett. 1989 Dec 4;258(2):266–268. doi: 10.1016/0014-5793(89)81670-9. [DOI] [PubMed] [Google Scholar]
  14. Romero A., Hoitink C. W., Nar H., Huber R., Messerschmidt A., Canters G. W. X-ray analysis and spectroscopic characterization of M121Q azurin. A copper site model for stellacyanin. J Mol Biol. 1993 Feb 20;229(4):1007–1021. doi: 10.1006/jmbi.1993.1101. [DOI] [PubMed] [Google Scholar]
  15. Sariaslani F. S. Microbial enzymes for oxidation of organic molecules. Crit Rev Biotechnol. 1989;9(3):171–257. doi: 10.3109/07388558909036736. [DOI] [PubMed] [Google Scholar]
  16. Stephens P. J., Jollie D. R., Warshel A. Protein Control of Redox Potentials of Ironminus signSulfur Proteins. Chem Rev. 1996 Nov 7;96(7):2491–2514. doi: 10.1021/cr950045w. [DOI] [PubMed] [Google Scholar]
  17. Van de Kamp M., Canters G. W., Andrew C. R., Sanders-Loehr J., Bender C. J., Peisach J. Effect of lysine ionization on the structure and electrochemical behaviour of the Met44-->Lys mutant of the blue-copper protein azurin from Pseudomonas aeruginosa. Eur J Biochem. 1993 Nov 15;218(1):229–238. doi: 10.1111/j.1432-1033.1993.tb18369.x. [DOI] [PubMed] [Google Scholar]
  18. Wahleithner J. A., Xu F., Brown K. M., Brown S. H., Golightly E. J., Halkier T., Kauppinen S., Pederson A., Schneider P. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet. 1996 Mar;29(4):395–403. doi: 10.1007/BF02208621. [DOI] [PubMed] [Google Scholar]
  19. Xu F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem. 1997 Jan 10;272(2):924–928. doi: 10.1074/jbc.272.2.924. [DOI] [PubMed] [Google Scholar]
  20. Xu F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry. 1996 Jun 11;35(23):7608–7614. doi: 10.1021/bi952971a. [DOI] [PubMed] [Google Scholar]
  21. Xu F., Shin W., Brown S. H., Wahleithner J. A., Sundaram U. M., Solomon E. I. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta. 1996 Feb 8;1292(2):303–311. doi: 10.1016/0167-4838(95)00210-3. [DOI] [PubMed] [Google Scholar]
  22. Yaver D. S., Xu F., Golightly E. J., Brown K. M., Brown S. H., Rey M. W., Schneider P., Halkier T., Mondorf K., Dalboge H. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol. 1996 Mar;62(3):834–841. doi: 10.1128/aem.62.3.834-841.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Pouderoyen G., Andrew C. R., Loehr T. M., Sanders-Loehr J., Mazumdar S., Hill H. A., Canters G. W. Spectroscopic and mechanistic studies of type-1 and type-2 copper sites in Pseudomonas aeruginosa azurin as obtained by addition of external ligands to mutant His46Gly. Biochemistry. 1996 Feb 6;35(5):1397–1407. doi: 10.1021/bi951604w. [DOI] [PubMed] [Google Scholar]
  24. van de Kamp M., Silvestrini M. C., Brunori M., Van Beeumen J., Hali F. C., Canters G. W. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. Eur J Biochem. 1990 Nov 26;194(1):109–118. doi: 10.1111/j.1432-1033.1990.tb19434.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES