Abstract
We isolated cDNA fragments from four human cell lines that had sequences for the Menkes Cu-transporting ATPase (ATP7A). Primers designed to generate a 4.8 kb cDNA with the complete open reading frame generated a 1.9 kb cDNA in addition to the expected 4.8 kb product. Sequence analysis revealed that the 1.9 kb cDNA encoded one of the six Cu-binding sites and two of the eight transmembrane domains of ATP7A. Stop and start codons were also present. More striking, however, was an unusual union between exons 2 and 16 that retained an in-frame reference to exon 23. The 1.9 kb cDNA thus appeared to be a truncated Menkes mRNA that coded for an ATP7A variant that lacked exons 3-15. A 530 bp probe specific for exon 23 that avoided sequences in the exon 3-15 region hybridized to a 5.5 kb band on Northern blot analysis. Western blotting provided immunochemical evidence for the presence of both a 170 kDa and a 57 kDa protein with ATP7A sequences in detergent extracts of Caco-2 and induced BeWo cells. Extracts from non-induced BeWo cells, which lack the capacity to express the Menkes gene (MNK), showed neither protein. In a cell-free reticulocyte lysate, a plasmid containing the 1.9 kb cDNA insert directed the synthesis of a 59 kDa protein with antigenic properties of ATP7A. These studies provide evidence that non-Menkes cells have the capacity to synthesize more than one MNK mRNA. The one characterized in this report codes for a 57-59 kDa protein that lacks the core structure of the ATP7A protein. The smaller variant could be an alternative spliced form of MNK mRNA.
Full Text
The Full Text of this article is available as a PDF (577.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Breathnach R., Benoist C., O'Hare K., Gannon F., Chambon P. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4853–4857. doi: 10.1073/pnas.75.10.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camakaris J., Petris M. J., Bailey L., Shen P., Lockhart P., Glover T. W., Barcroft C., Patton J., Mercer J. F. Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum Mol Genet. 1995 Nov;4(11):2117–2123. doi: 10.1093/hmg/4.11.2117. [DOI] [PubMed] [Google Scholar]
- Chelly J., Tümer Z., Tønnesen T., Petterson A., Ishikawa-Brush Y., Tommerup N., Horn N., Monaco A. P. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993 Jan;3(1):14–19. doi: 10.1038/ng0193-14. [DOI] [PubMed] [Google Scholar]
- Danks D. M., Campbell P. E., Walker-Smith J., Stevens B. J., Gillespie J. M., Blomfield J., Turner B. Menkes' kinky-hair syndrome. Lancet. 1972 May 20;1(7760):1100–1102. doi: 10.1016/s0140-6736(72)91433-x. [DOI] [PubMed] [Google Scholar]
- Danks D. M. Copper deficiency in humans. Annu Rev Nutr. 1988;8:235–257. doi: 10.1146/annurev.nu.08.070188.001315. [DOI] [PubMed] [Google Scholar]
- Dierick H. A., Ambrosini L., Spencer J., Glover T. W., Mercer J. F. Molecular structure of the Menkes disease gene (ATP7A). Genomics. 1995 Aug 10;28(3):462–469. doi: 10.1006/geno.1995.1175. [DOI] [PubMed] [Google Scholar]
- Klomp L. W., Lin S. J., Yuan D. S., Klausner R. D., Culotta V. C., Gitlin J. D. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 1997 Apr 4;272(14):9221–9226. doi: 10.1074/jbc.272.14.9221. [DOI] [PubMed] [Google Scholar]
- Kuo Y. M., Gitschier J., Packman S. Developmental expression of the mouse mottled and toxic milk genes suggests distinct functions for the Menkes and Wilson disease copper transporters. Hum Mol Genet. 1997 Jul;6(7):1043–1049. doi: 10.1093/hmg/6.7.1043. [DOI] [PubMed] [Google Scholar]
- Lutsenko S., Petrukhin K., Cooper M. J., Gilliam C. T., Kaplan J. H. N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson's and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J Biol Chem. 1997 Jul 25;272(30):18939–18944. doi: 10.1074/jbc.272.30.18939. [DOI] [PubMed] [Google Scholar]
- Mercer J. F., Livingston J., Hall B., Paynter J. A., Begy C., Chandrasekharappa S., Lockhart P., Grimes A., Bhave M., Siemieniak D. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993 Jan;3(1):20–25. doi: 10.1038/ng0193-20. [DOI] [PubMed] [Google Scholar]
- Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta V. C., Penner-Hahn J. E., O'Halloran T. V. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997 Oct 31;278(5339):853–856. doi: 10.1126/science.278.5339.853. [DOI] [PubMed] [Google Scholar]
- Qian Y., Majumdar S., Reddy M. C., Harris E. D. Coincident expression of Menkes gene with copper efflux in human placental cells. Am J Physiol. 1996 Jun;270(6 Pt 1):C1880–C1884. doi: 10.1152/ajpcell.1996.270.6.C1880. [DOI] [PubMed] [Google Scholar]
- Qian Y., Tiffany-Castiglioni E., Harris E. D. Copper transport and kinetics in cultured C6 rat glioma cells. Am J Physiol. 1995 Oct;269(4 Pt 1):C892–C898. doi: 10.1152/ajpcell.1995.269.4.C892. [DOI] [PubMed] [Google Scholar]
- Qian Y., Tiffany-Castiglioni E., Harris E. D. Functional analysis of a genetic defect of copper transport (Menkes disease) in different cell lines. Am J Physiol. 1996 Jul;271(1 Pt 1):C378–C384. doi: 10.1152/ajpcell.1996.271.1.C378. [DOI] [PubMed] [Google Scholar]
- Solioz M., Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci. 1996 Jul;21(7):237–241. [PubMed] [Google Scholar]
- Vulpe C., Levinson B., Whitney S., Packman S., Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993 Jan;3(1):7–13. doi: 10.1038/ng0193-7. [DOI] [PubMed] [Google Scholar]
- Yang X. L., Miura N., Kawarada Y., Terada K., Petrukhin K., Gilliam T., Sugiyama T. Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem J. 1997 Sep 15;326(Pt 3):897–902. doi: 10.1042/bj3260897. [DOI] [PMC free article] [PubMed] [Google Scholar]