Abstract
The cDNA species encoding the B chains (B1 and B2) of beta-bungarotoxins (beta-Bgt) were constructed from the cellular RNA isolated from the venom glands of Bungarus multicinctus (Taiwan banded krait). The deduced amino acid sequences of the B chains were different from those determined previously by a protein sequencing technique. One additional Arg residue is inserted between Val-19 and Arg-20 of the B1 chain. Similarly the insertion of one additional Val residue between Val-19 and Arg-20 of the B2 chain is noted. Thus the B chains should comprise 61 amino acid residues. Moreover, the residues at positions 44-46 are Gly-Asn-His, in contrast with a previous result showing the sequence His-Gly-Asn. Instead of Asp, the residues at positions 41 and 43 are Asn. The B chain was subcloned into the expression vector pET-32a(+) and transformed into Escherichia coli strain BL21(DE3). The recombinant B chain was expressed as a fusion protein and purified on a His-Bind resin column. The yield of affinity-purified fusion protein was increased markedly by replacing Cys-55 of the B chain with Ser. However, the isolated B(C55S) chain became insoluble in aqueous solution after removal of the fused protein from the affinity-purified product, suggesting that protein-protein interactions might be crucial for stabilizing the structure of the B chain. The B(C55S) chain fusion protein showed activity in blocking the voltage-dependent K+ channel, but did not inhibit the binding of beta-Bgt to synaptosomal membranes. These results, together with the finding that modification of His-48 of the A chain of beta-Bgt caused a marked decrease in the ability to bind toxin to its acceptor proteins, suggest that the B chain is involved in the K+ channel blocking action observed with beta-Bgt, and that the binding of beta-Bgt to neuronal receptors is not heavily dependent on the B chain.
Full Text
The Full Text of this article is available as a PDF (386.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe T., Alemá S., Miledi R. Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur J Biochem. 1977 Oct 17;80(1):1–12. doi: 10.1111/j.1432-1033.1977.tb11849.x. [DOI] [PubMed] [Google Scholar]
- Benishin C. G. Potassium channel blockade by the B subunit of beta-bungarotoxin. Mol Pharmacol. 1990 Aug;38(2):164–169. [PubMed] [Google Scholar]
- Black A. R., Breeze A. L., Othman I. B., Dolly J. O. Involvement of neuronal acceptors for dendrotoxin in its convulsive action in rat brain. Biochem J. 1986 Jul 15;237(2):397–404. doi: 10.1042/bj2370397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breeze A. L., Dolly J. O. Interactions between discrete neuronal membrane binding sites for the putative K+-channel ligands beta-bungarotoxin, dendrotoxin and mast-cell-degranulating peptide. Eur J Biochem. 1989 Jan 2;178(3):771–778. doi: 10.1111/j.1432-1033.1989.tb14508.x. [DOI] [PubMed] [Google Scholar]
- Chang L. S., Lin S. R., Chang C. C. The essentiality of calcium ion in the enzymatic activity of Taiwan cobra phospholipase A2. J Protein Chem. 1996 Nov;15(8):701–707. doi: 10.1007/BF01887143. [DOI] [PubMed] [Google Scholar]
- Chang L. S., Lin S. R., Chang C. C., Yang C. C. The essentiality of B chain in stabilizing the structure of the A chain in beta 1-bungarotoxin from Bungarus multicinctus venom. J Protein Chem. 1994 Feb;13(2):233–236. doi: 10.1007/BF01891981. [DOI] [PubMed] [Google Scholar]
- Chang L. S., Wu P. F., Chang C. C. cDNA sequence analysis and expression of the a chain of beta-bungarotoxin from Bungarus multicinctus (Taiwan banded krait). Biochem Biophys Res Commun. 1996 Apr 16;221(2):328–332. doi: 10.1006/bbrc.1996.0595. [DOI] [PubMed] [Google Scholar]
- Chang L. S., Wu P. F., Chang C. C. cDNA sequence analysis and mutagenesis studies on the A chain of beta-bungarotoxin from Taiwan banded krait. J Protein Chem. 1996 Nov;15(8):755–761. doi: 10.1007/BF01887150. [DOI] [PubMed] [Google Scholar]
- Chang L. S., Yang C. C. Role of the N-terminal region of the A chain in beta 1-bungarotoxin from the venom of Bungarus multicinctus (Taiwan-banded krait). J Protein Chem. 1988 Dec;7(6):713–727. doi: 10.1007/BF01025579. [DOI] [PubMed] [Google Scholar]
- Chang L., Lin J., Wu P., Chang C., Hong E. cDNA sequence analysis and expression of kappa-bungarotoxin from Taiwan banded krait. Biochem Biophys Res Commun. 1997 Jan 3;230(1):192–195. doi: 10.1006/bbrc.1996.5916. [DOI] [PubMed] [Google Scholar]
- Chu C. C., Chu S. T., Chen S. W., Chen Y. H. The non-phospholipase A2 subunit of beta-bungarotoxin plays an important role in the phospholipase A2-independent neurotoxic effect: characterization of three isotoxins with a common phospholipase A2 subunit. Biochem J. 1994 Oct 1;303(Pt 1):171–176. doi: 10.1042/bj3030171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu C. C., Li S. H., Chen Y. H. Resolution of isotoxins in the beta-bungarotoxin family. J Chromatogr A. 1995 Mar 10;694(2):492–497. doi: 10.1016/0021-9673(94)01173-c. [DOI] [PubMed] [Google Scholar]
- Chu S. T., Chu C. C., Tseng C. C., Chen Y. H. Met-8 of the beta 1-bungarotoxin phospholipase A2 subunit is essential for the phospholipase A2-independent neurotoxic effect. Biochem J. 1993 Nov 1;295(Pt 3):713–718. doi: 10.1042/bj2950713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danse J. M., Garnier J. M., Kempf J. cDNA deduced amino-acid sequence of a new phospholipase from Bungarus multicinctus. Nucleic Acids Res. 1990 Aug 11;18(15):4610–4610. doi: 10.1093/nar/18.15.4610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danse J. M., Toussaint J. L., Kempf J. Nucleotide sequence encoding beta-bungarotoxin A2-chain from the venom glands of Bungarus multicinctus. Nucleic Acids Res. 1990 Aug 11;18(15):4609–4609. doi: 10.1093/nar/18.15.4609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyer F., Penner R. The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals. J Physiol. 1987 May;386:455–463. doi: 10.1113/jphysiol.1987.sp016544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dufton M. J. Proteinase inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur J Biochem. 1985 Dec 16;153(3):647–654. doi: 10.1111/j.1432-1033.1985.tb09349.x. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hollecker M., Marshall D. L., Harvey A. L. Structural features important for the biological activity of the potassium channel blocking dendrotoxins. Br J Pharmacol. 1993 Oct;110(2):790–794. doi: 10.1111/j.1476-5381.1993.tb13881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kini R. M., Iwanaga S. Structure-function relationships of phospholipases. I: Prediction of presynaptic neurotoxicity. Toxicon. 1986;24(6):527–541. doi: 10.1016/0041-0101(86)90173-x. [DOI] [PubMed] [Google Scholar]
- Kondo K., Narita K., Lee C. Y. Amino acid sequences of the two polypeptide chains in beta1-bungarotoxin from the venom of Bungarus multicinctus. J Biochem. 1978 Jan;83(1):101–115. doi: 10.1093/oxfordjournals.jbchem.a131881. [DOI] [PubMed] [Google Scholar]
- Kondo K., Narita K., Lee C. Y. Chemical properties and amino acid composition of beta1-bungarotoxin from the venom of Bungarus multicinctus (Formosan banded krait). J Biochem. 1978 Jan;83(1):91–99. doi: 10.1093/oxfordjournals.jbchem.a131917. [DOI] [PubMed] [Google Scholar]
- Kondo K., Toda H., Narita K., Lee C. Y. Amino acid sequence of beta 2-bungarotoxin from Bungarus multicinctus venom. The amino acid substitutions in the B chains. J Biochem. 1982 May;91(5):1519–1530. doi: 10.1093/oxfordjournals.jbchem.a133843. [DOI] [PubMed] [Google Scholar]
- Kondo K., Toda H., Narita K., Lee C. Y. Amino acid sequences of three beta-bungarotoxins (beta 3-, beta 4-, and beta 5- bungarotoxins) from Bungarus multicinctus venom. Amino acid substitutions in the A chains. J Biochem. 1982 May;91(5):1531–1548. doi: 10.1093/oxfordjournals.jbchem.a133844. [DOI] [PubMed] [Google Scholar]
- Krizaj I., Faure G., Gubensek F., Bon C. Neurotoxic phospholipases A2 ammodytoxin and crotoxin bind to distinct high-affinity protein acceptors in Torpedo marmorata electric organ. Biochemistry. 1997 Mar 11;36(10):2779–2787. doi: 10.1021/bi9612374. [DOI] [PubMed] [Google Scholar]
- Kwong P. D., McDonald N. Q., Sigler P. B., Hendrickson W. A. Structure of beta 2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure. 1995 Oct 15;3(10):1109–1119. doi: 10.1016/s0969-2126(01)00246-5. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lin W. Z., Chu S. T., Chen Y. H. Optical activity and conformation of beta-bungarotoxin in solution. Proc Natl Sci Counc Repub China B. 1984 Apr;8(2):113–118. [PubMed] [Google Scholar]
- Lo Y. C., Wu S. N., Wu J. R., Chen I. J. Effect of capsaicin on membrane currents in cultured vascular smooth muscle cells of rat aorta. Eur J Pharmacol. 1995 Mar 16;292(3-4):321–328. doi: 10.1016/0926-6917(95)90039-x. [DOI] [PubMed] [Google Scholar]
- Othman I. B., Spokes J. W., Dolly J. O. Preparation of neurotoxic 3H-beta-bungarotoxin: demonstration of saturable binding to brain synapses and its inhibition by toxin I. Eur J Biochem. 1982 Nov;128(1):267–276. doi: 10.1111/j.1432-1033.1982.tb06961.x. [DOI] [PubMed] [Google Scholar]
- Pelchen-Matthews A., Dolly J. O. Distribution of acceptors for beta-bungarotoxin in the central nervous system of the rat. Brain Res. 1988 Feb 16;441(1-2):127–138. doi: 10.1016/0006-8993(88)91390-x. [DOI] [PubMed] [Google Scholar]
- Petersen M., Penner R., Pierau F. K., Dreyer F. Beta-bungarotoxin inhibits a non-inactivating potassium current in guinea pig dorsal root ganglion neurones. Neurosci Lett. 1986 Jul 11;68(1):141–145. doi: 10.1016/0304-3940(86)90244-2. [DOI] [PubMed] [Google Scholar]
- Rehm H., Betz H. Binding of beta-bungarotoxin to synaptic membrane fractions of chick brain. J Biol Chem. 1982 Sep 10;257(17):10015–10022. [PubMed] [Google Scholar]
- Rehm H., Betz H. Solubilization and characterization of the beta-bungarotoxin-binding protein of chick brain membranes. J Biol Chem. 1984 Jun 10;259(11):6865–6869. [PubMed] [Google Scholar]
- Rowan E. G., Harvey A. L. Potassium channel blocking actions of beta-bungarotoxin and related toxins on mouse and frog motor nerve terminals. Br J Pharmacol. 1988 Jul;94(3):839–847. doi: 10.1111/j.1476-5381.1988.tb11595.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rufini S., Pedersen J. Z., Desideri A., Luly P. Beta-bungarotoxin-mediated liposome fusion: spectroscopic characterization by fluorescence and ESR. Biochemistry. 1990 Oct 16;29(41):9644–9651. doi: 10.1021/bi00493a020. [DOI] [PubMed] [Google Scholar]
- Rugolo M., Dolly J. O., Nicholls D. G. The mechanism of action of beta-bungarotoxin at the presynaptic plasma membrane. Biochem J. 1986 Jan 15;233(2):519–523. doi: 10.1042/bj2330519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt R. R., Betz H., Rehm H. Inhibition of beta-bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Biochemistry. 1988 Feb 9;27(3):963–967. doi: 10.1021/bi00403a019. [DOI] [PubMed] [Google Scholar]
- Schmidt R. R., Betz H., Rehm H. Inhibition of beta-bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Biochemistry. 1988 Feb 9;27(3):963–967. doi: 10.1021/bi00403a019. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]