Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):87–92. doi: 10.1042/bj3340087

Cloning and functional expression of B chains of beta-bungarotoxins from Bungarus multicinctus (Taiwan banded krait).

P F Wu 1, S N Wu 1, C C Chang 1, L S Chang 1
PMCID: PMC1219665  PMID: 9693106

Abstract

The cDNA species encoding the B chains (B1 and B2) of beta-bungarotoxins (beta-Bgt) were constructed from the cellular RNA isolated from the venom glands of Bungarus multicinctus (Taiwan banded krait). The deduced amino acid sequences of the B chains were different from those determined previously by a protein sequencing technique. One additional Arg residue is inserted between Val-19 and Arg-20 of the B1 chain. Similarly the insertion of one additional Val residue between Val-19 and Arg-20 of the B2 chain is noted. Thus the B chains should comprise 61 amino acid residues. Moreover, the residues at positions 44-46 are Gly-Asn-His, in contrast with a previous result showing the sequence His-Gly-Asn. Instead of Asp, the residues at positions 41 and 43 are Asn. The B chain was subcloned into the expression vector pET-32a(+) and transformed into Escherichia coli strain BL21(DE3). The recombinant B chain was expressed as a fusion protein and purified on a His-Bind resin column. The yield of affinity-purified fusion protein was increased markedly by replacing Cys-55 of the B chain with Ser. However, the isolated B(C55S) chain became insoluble in aqueous solution after removal of the fused protein from the affinity-purified product, suggesting that protein-protein interactions might be crucial for stabilizing the structure of the B chain. The B(C55S) chain fusion protein showed activity in blocking the voltage-dependent K+ channel, but did not inhibit the binding of beta-Bgt to synaptosomal membranes. These results, together with the finding that modification of His-48 of the A chain of beta-Bgt caused a marked decrease in the ability to bind toxin to its acceptor proteins, suggest that the B chain is involved in the K+ channel blocking action observed with beta-Bgt, and that the binding of beta-Bgt to neuronal receptors is not heavily dependent on the B chain.

Full Text

The Full Text of this article is available as a PDF (386.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Alemá S., Miledi R. Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur J Biochem. 1977 Oct 17;80(1):1–12. doi: 10.1111/j.1432-1033.1977.tb11849.x. [DOI] [PubMed] [Google Scholar]
  2. Benishin C. G. Potassium channel blockade by the B subunit of beta-bungarotoxin. Mol Pharmacol. 1990 Aug;38(2):164–169. [PubMed] [Google Scholar]
  3. Black A. R., Breeze A. L., Othman I. B., Dolly J. O. Involvement of neuronal acceptors for dendrotoxin in its convulsive action in rat brain. Biochem J. 1986 Jul 15;237(2):397–404. doi: 10.1042/bj2370397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breeze A. L., Dolly J. O. Interactions between discrete neuronal membrane binding sites for the putative K+-channel ligands beta-bungarotoxin, dendrotoxin and mast-cell-degranulating peptide. Eur J Biochem. 1989 Jan 2;178(3):771–778. doi: 10.1111/j.1432-1033.1989.tb14508.x. [DOI] [PubMed] [Google Scholar]
  5. Chang L. S., Lin S. R., Chang C. C. The essentiality of calcium ion in the enzymatic activity of Taiwan cobra phospholipase A2. J Protein Chem. 1996 Nov;15(8):701–707. doi: 10.1007/BF01887143. [DOI] [PubMed] [Google Scholar]
  6. Chang L. S., Lin S. R., Chang C. C., Yang C. C. The essentiality of B chain in stabilizing the structure of the A chain in beta 1-bungarotoxin from Bungarus multicinctus venom. J Protein Chem. 1994 Feb;13(2):233–236. doi: 10.1007/BF01891981. [DOI] [PubMed] [Google Scholar]
  7. Chang L. S., Wu P. F., Chang C. C. cDNA sequence analysis and expression of the a chain of beta-bungarotoxin from Bungarus multicinctus (Taiwan banded krait). Biochem Biophys Res Commun. 1996 Apr 16;221(2):328–332. doi: 10.1006/bbrc.1996.0595. [DOI] [PubMed] [Google Scholar]
  8. Chang L. S., Wu P. F., Chang C. C. cDNA sequence analysis and mutagenesis studies on the A chain of beta-bungarotoxin from Taiwan banded krait. J Protein Chem. 1996 Nov;15(8):755–761. doi: 10.1007/BF01887150. [DOI] [PubMed] [Google Scholar]
  9. Chang L. S., Yang C. C. Role of the N-terminal region of the A chain in beta 1-bungarotoxin from the venom of Bungarus multicinctus (Taiwan-banded krait). J Protein Chem. 1988 Dec;7(6):713–727. doi: 10.1007/BF01025579. [DOI] [PubMed] [Google Scholar]
  10. Chang L., Lin J., Wu P., Chang C., Hong E. cDNA sequence analysis and expression of kappa-bungarotoxin from Taiwan banded krait. Biochem Biophys Res Commun. 1997 Jan 3;230(1):192–195. doi: 10.1006/bbrc.1996.5916. [DOI] [PubMed] [Google Scholar]
  11. Chu C. C., Chu S. T., Chen S. W., Chen Y. H. The non-phospholipase A2 subunit of beta-bungarotoxin plays an important role in the phospholipase A2-independent neurotoxic effect: characterization of three isotoxins with a common phospholipase A2 subunit. Biochem J. 1994 Oct 1;303(Pt 1):171–176. doi: 10.1042/bj3030171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chu C. C., Li S. H., Chen Y. H. Resolution of isotoxins in the beta-bungarotoxin family. J Chromatogr A. 1995 Mar 10;694(2):492–497. doi: 10.1016/0021-9673(94)01173-c. [DOI] [PubMed] [Google Scholar]
  13. Chu S. T., Chu C. C., Tseng C. C., Chen Y. H. Met-8 of the beta 1-bungarotoxin phospholipase A2 subunit is essential for the phospholipase A2-independent neurotoxic effect. Biochem J. 1993 Nov 1;295(Pt 3):713–718. doi: 10.1042/bj2950713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Danse J. M., Garnier J. M., Kempf J. cDNA deduced amino-acid sequence of a new phospholipase from Bungarus multicinctus. Nucleic Acids Res. 1990 Aug 11;18(15):4610–4610. doi: 10.1093/nar/18.15.4610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Danse J. M., Toussaint J. L., Kempf J. Nucleotide sequence encoding beta-bungarotoxin A2-chain from the venom glands of Bungarus multicinctus. Nucleic Acids Res. 1990 Aug 11;18(15):4609–4609. doi: 10.1093/nar/18.15.4609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dreyer F., Penner R. The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals. J Physiol. 1987 May;386:455–463. doi: 10.1113/jphysiol.1987.sp016544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dufton M. J. Proteinase inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur J Biochem. 1985 Dec 16;153(3):647–654. doi: 10.1111/j.1432-1033.1985.tb09349.x. [DOI] [PubMed] [Google Scholar]
  18. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hollecker M., Marshall D. L., Harvey A. L. Structural features important for the biological activity of the potassium channel blocking dendrotoxins. Br J Pharmacol. 1993 Oct;110(2):790–794. doi: 10.1111/j.1476-5381.1993.tb13881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kini R. M., Iwanaga S. Structure-function relationships of phospholipases. I: Prediction of presynaptic neurotoxicity. Toxicon. 1986;24(6):527–541. doi: 10.1016/0041-0101(86)90173-x. [DOI] [PubMed] [Google Scholar]
  21. Kondo K., Narita K., Lee C. Y. Amino acid sequences of the two polypeptide chains in beta1-bungarotoxin from the venom of Bungarus multicinctus. J Biochem. 1978 Jan;83(1):101–115. doi: 10.1093/oxfordjournals.jbchem.a131881. [DOI] [PubMed] [Google Scholar]
  22. Kondo K., Narita K., Lee C. Y. Chemical properties and amino acid composition of beta1-bungarotoxin from the venom of Bungarus multicinctus (Formosan banded krait). J Biochem. 1978 Jan;83(1):91–99. doi: 10.1093/oxfordjournals.jbchem.a131917. [DOI] [PubMed] [Google Scholar]
  23. Kondo K., Toda H., Narita K., Lee C. Y. Amino acid sequence of beta 2-bungarotoxin from Bungarus multicinctus venom. The amino acid substitutions in the B chains. J Biochem. 1982 May;91(5):1519–1530. doi: 10.1093/oxfordjournals.jbchem.a133843. [DOI] [PubMed] [Google Scholar]
  24. Kondo K., Toda H., Narita K., Lee C. Y. Amino acid sequences of three beta-bungarotoxins (beta 3-, beta 4-, and beta 5- bungarotoxins) from Bungarus multicinctus venom. Amino acid substitutions in the A chains. J Biochem. 1982 May;91(5):1531–1548. doi: 10.1093/oxfordjournals.jbchem.a133844. [DOI] [PubMed] [Google Scholar]
  25. Krizaj I., Faure G., Gubensek F., Bon C. Neurotoxic phospholipases A2 ammodytoxin and crotoxin bind to distinct high-affinity protein acceptors in Torpedo marmorata electric organ. Biochemistry. 1997 Mar 11;36(10):2779–2787. doi: 10.1021/bi9612374. [DOI] [PubMed] [Google Scholar]
  26. Kwong P. D., McDonald N. Q., Sigler P. B., Hendrickson W. A. Structure of beta 2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure. 1995 Oct 15;3(10):1109–1119. doi: 10.1016/s0969-2126(01)00246-5. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Lin W. Z., Chu S. T., Chen Y. H. Optical activity and conformation of beta-bungarotoxin in solution. Proc Natl Sci Counc Repub China B. 1984 Apr;8(2):113–118. [PubMed] [Google Scholar]
  29. Lo Y. C., Wu S. N., Wu J. R., Chen I. J. Effect of capsaicin on membrane currents in cultured vascular smooth muscle cells of rat aorta. Eur J Pharmacol. 1995 Mar 16;292(3-4):321–328. doi: 10.1016/0926-6917(95)90039-x. [DOI] [PubMed] [Google Scholar]
  30. Othman I. B., Spokes J. W., Dolly J. O. Preparation of neurotoxic 3H-beta-bungarotoxin: demonstration of saturable binding to brain synapses and its inhibition by toxin I. Eur J Biochem. 1982 Nov;128(1):267–276. doi: 10.1111/j.1432-1033.1982.tb06961.x. [DOI] [PubMed] [Google Scholar]
  31. Pelchen-Matthews A., Dolly J. O. Distribution of acceptors for beta-bungarotoxin in the central nervous system of the rat. Brain Res. 1988 Feb 16;441(1-2):127–138. doi: 10.1016/0006-8993(88)91390-x. [DOI] [PubMed] [Google Scholar]
  32. Petersen M., Penner R., Pierau F. K., Dreyer F. Beta-bungarotoxin inhibits a non-inactivating potassium current in guinea pig dorsal root ganglion neurones. Neurosci Lett. 1986 Jul 11;68(1):141–145. doi: 10.1016/0304-3940(86)90244-2. [DOI] [PubMed] [Google Scholar]
  33. Rehm H., Betz H. Binding of beta-bungarotoxin to synaptic membrane fractions of chick brain. J Biol Chem. 1982 Sep 10;257(17):10015–10022. [PubMed] [Google Scholar]
  34. Rehm H., Betz H. Solubilization and characterization of the beta-bungarotoxin-binding protein of chick brain membranes. J Biol Chem. 1984 Jun 10;259(11):6865–6869. [PubMed] [Google Scholar]
  35. Rowan E. G., Harvey A. L. Potassium channel blocking actions of beta-bungarotoxin and related toxins on mouse and frog motor nerve terminals. Br J Pharmacol. 1988 Jul;94(3):839–847. doi: 10.1111/j.1476-5381.1988.tb11595.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rufini S., Pedersen J. Z., Desideri A., Luly P. Beta-bungarotoxin-mediated liposome fusion: spectroscopic characterization by fluorescence and ESR. Biochemistry. 1990 Oct 16;29(41):9644–9651. doi: 10.1021/bi00493a020. [DOI] [PubMed] [Google Scholar]
  37. Rugolo M., Dolly J. O., Nicholls D. G. The mechanism of action of beta-bungarotoxin at the presynaptic plasma membrane. Biochem J. 1986 Jan 15;233(2):519–523. doi: 10.1042/bj2330519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schmidt R. R., Betz H., Rehm H. Inhibition of beta-bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Biochemistry. 1988 Feb 9;27(3):963–967. doi: 10.1021/bi00403a019. [DOI] [PubMed] [Google Scholar]
  39. Schmidt R. R., Betz H., Rehm H. Inhibition of beta-bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Biochemistry. 1988 Feb 9;27(3):963–967. doi: 10.1021/bi00403a019. [DOI] [PubMed] [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES