Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):99–105. doi: 10.1042/bj3340099

Identification and characterization of the antimicrobial peptide corresponding to C-terminal beta-sheet domain of tenecin 1, an antibacterial protein of larvae of Tenebrio molitor.

K H Lee 1, S Y Hong 1, J E Oh 1, M Kwon 1, J H Yoon 1, J Lee 1, B L Lee 1, H M Moon 1
PMCID: PMC1219667  PMID: 9693108

Abstract

An active fragment was identified from tenecin 1, an antibacterial protein belonging to the insect defensin family, by synthesizing the peptides corresponding to the three regions of tenecin 1. Only the fragment corresponding to the C-terminal beta-sheet domain showed activity against fungi as well as Gram-positive and Gram-negative bacteria, whereas tenecin 1, the native protein, showed activity only against Gram-positive bacteria. CD spectra indicated that each fragment in a membrane-mimetic environment might adopt a secondary structure corresponding to its region in the protein. The leakage of dye from liposomes induced by this fragment suggested that this fragment acts on the membrane of pathogens as a primary mode of action. A comparison between the structure and the activity of each fragment indicated that a net positive charge was a prerequisite factor for activity. To the best of our knowledge this is the first report in which the fragment corresponding to the beta-sheet region in antibacterial proteins, which consists of alpha-helical and beta-sheet regions, has been identified as a primary active fragment.

Full Text

The Full Text of this article is available as a PDF (407.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreu D., Ubach J., Boman A., Wåhlin B., Wade D., Merrifield R. B., Boman H. G. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett. 1992 Jan 20;296(2):190–194. doi: 10.1016/0014-5793(92)80377-s. [DOI] [PubMed] [Google Scholar]
  2. Argiolas A., Pisano J. J. Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J Biol Chem. 1985 Feb 10;260(3):1437–1444. [PubMed] [Google Scholar]
  3. Boman H. G., Wade D., Boman I. A., Wåhlin B., Merrifield R. B. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 1989 Dec 18;259(1):103–106. doi: 10.1016/0014-5793(89)81505-4. [DOI] [PubMed] [Google Scholar]
  4. Bonmatin J. M., Bonnat J. L., Gallet X., Vovelle F., Ptak M., Reichhart J. M., Hoffmann J. A., Keppi E., Legrain M., Achstetter T. Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J Biomol NMR. 1992 May;2(3):235–256. doi: 10.1007/BF01875319. [DOI] [PubMed] [Google Scholar]
  5. Bulet P., Cociancich S., Dimarcq J. L., Lambert J., Reichhart J. M., Hoffmann D., Hetru C., Hoffmann J. A. Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J Biol Chem. 1991 Dec 25;266(36):24520–24525. [PubMed] [Google Scholar]
  6. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  7. Chéron M., Cybulska B., Mazerski J., Grzybowska J., Czerwiński A., Borowski E. Quantitative structure-activity relationships in amphotericin B derivatives. Biochem Pharmacol. 1988 Mar 1;37(5):827–836. doi: 10.1016/0006-2952(88)90168-2. [DOI] [PubMed] [Google Scholar]
  8. Cociancich S., Ghazi A., Hetru C., Hoffmann J. A., Letellier L. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem. 1993 Sep 15;268(26):19239–19245. [PubMed] [Google Scholar]
  9. Cornet B., Bonmatin J. M., Hetru C., Hoffmann J. A., Ptak M., Vovelle F. Refined three-dimensional solution structure of insect defensin A. Structure. 1995 May 15;3(5):435–448. doi: 10.1016/s0969-2126(01)00177-0. [DOI] [PubMed] [Google Scholar]
  10. Dathe M., Schümann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 1996 Sep 24;35(38):12612–12622. doi: 10.1021/bi960835f. [DOI] [PubMed] [Google Scholar]
  11. Dathe M., Wieprecht T., Nikolenko H., Handel L., Maloy W. L., MacDonald D. L., Beyermann M., Bienert M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 1997 Feb 17;403(2):208–212. doi: 10.1016/s0014-5793(97)00055-0. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg D., Weiss R. M., Terwilliger T. C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature. 1982 Sep 23;299(5881):371–374. doi: 10.1038/299371a0. [DOI] [PubMed] [Google Scholar]
  13. Ellens H., Bentz J., Szoka F. C. H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry. 1985 Jun 18;24(13):3099–3106. doi: 10.1021/bi00334a005. [DOI] [PubMed] [Google Scholar]
  14. Ellens H., Bentz J., Szoka F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984 Mar 27;23(7):1532–1538. doi: 10.1021/bi00302a029. [DOI] [PubMed] [Google Scholar]
  15. Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem. 1990 Jul 5;265(19):11333–11337. [PubMed] [Google Scholar]
  16. Hanzawa H., Shimada I., Kuzuhara T., Komano H., Kohda D., Inagaki F., Natori S., Arata Y. 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett. 1990 Sep 3;269(2):413–420. doi: 10.1016/0014-5793(90)81206-4. [DOI] [PubMed] [Google Scholar]
  17. Harwig S. S., Waring A., Yang H. J., Cho Y., Tan L., Lehrer R. I. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur J Biochem. 1996 Sep 1;240(2):352–357. doi: 10.1111/j.1432-1033.1996.0352h.x. [DOI] [PubMed] [Google Scholar]
  18. Hoek K. S., Milne J. M., Grieve P. A., Dionysius D. A., Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997 Jan;41(1):54–59. doi: 10.1128/aac.41.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kiyota T., Lee S., Sugihara G. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry. 1996 Oct 8;35(40):13196–13204. doi: 10.1021/bi961289t. [DOI] [PubMed] [Google Scholar]
  20. Kuzuhara T., Nakajima Y., Matsuyama K., Natori S. Determination of the disulfide array in sapecin, an antibacterial peptide of Sarcophaga peregrina (flesh fly). J Biochem. 1990 Apr;107(4):514–518. doi: 10.1093/oxfordjournals.jbchem.a123077. [DOI] [PubMed] [Google Scholar]
  21. Lambert J., Keppi E., Dimarcq J. L., Wicker C., Reichhart J. M., Dunbar B., Lepage P., Van Dorsselaer A., Hoffmann J., Fothergill J. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A. 1989 Jan;86(1):262–266. doi: 10.1073/pnas.86.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lepage P., Bitsch F., Roecklin D., Keppi E., Dimarcq J. L., Reichhart J. M., Hoffmann J. A., Roitsch C., Van Dorseelaer A. Determination of disulfide bridges in natural and recombinant insect defensin A. Eur J Biochem. 1991 Mar 28;196(3):735–742. doi: 10.1111/j.1432-1033.1991.tb15872.x. [DOI] [PubMed] [Google Scholar]
  23. Little R. G., Kelner D. N., Lim E., Burke D. J., Conlon P. J. Functional domains of recombinant bactericidal/permeability increasing protein (rBPI23). J Biol Chem. 1994 Jan 21;269(3):1865–1872. [PubMed] [Google Scholar]
  24. Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
  25. Matsuyama K., Natori S. Mode of action of sapecin, a novel antibacterial protein of Sarcophaga peregrina (flesh fly). J Biochem. 1990 Jul;108(1):128–132. doi: 10.1093/oxfordjournals.jbchem.a123151. [DOI] [PubMed] [Google Scholar]
  26. Matsuyama K., Natori S. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem. 1988 Nov 15;263(32):17112–17116. [PubMed] [Google Scholar]
  27. Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
  28. Matsuzaki K., Yoneyama S., Fujii N., Miyajima K., Yamada K., Kirino Y., Anzai K. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry. 1997 Aug 12;36(32):9799–9806. doi: 10.1021/bi970588v. [DOI] [PubMed] [Google Scholar]
  29. McLean L. R., Hagaman K. A., Owen T. J., Krstenansky J. L. Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes. Biochemistry. 1991 Jan 8;30(1):31–37. doi: 10.1021/bi00215a005. [DOI] [PubMed] [Google Scholar]
  30. Moon H. J., Lee S. Y., Kurata S., Natori S., Lee B. L. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J Biochem. 1994 Jul;116(1):53–58. doi: 10.1093/oxfordjournals.jbchem.a124502. [DOI] [PubMed] [Google Scholar]
  31. Mor A., Nicolas P. The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem. 1994 Jan 21;269(3):1934–1939. [PubMed] [Google Scholar]
  32. Nakajima R., Kitamura A., Someya K., Tanaka M., Sato K. In vitro and in vivo antifungal activities of DU-6859a, a fluoroquinolone, in combination with amphotericin B and fluconazole against pathogenic fungi. Antimicrob Agents Chemother. 1995 Jul;39(7):1517–1521. doi: 10.1128/aac.39.7.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saberwal G., Nagaraj R. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim Biophys Acta. 1994 Jun 29;1197(2):109–131. doi: 10.1016/0304-4157(94)90002-7. [DOI] [PubMed] [Google Scholar]
  34. Smolarsky M., Teitelbaum D., Sela M., Gitler C. A simple fluorescent method to determine complement-mediated liposome immune lysis. J Immunol Methods. 1977;15(3):255–265. doi: 10.1016/0022-1759(77)90063-1. [DOI] [PubMed] [Google Scholar]
  35. Spetzler J. C., Rao C., Tam J. P. A novel strategy for the synthesis of the cysteine-rich protective antigen of the malaria merozoite surface protein (MSP-1). Knowledge-based strategy for disulfide formation. Int J Pept Protein Res. 1994 Apr;43(4):351–358. doi: 10.1111/j.1399-3011.1994.tb00530.x. [DOI] [PubMed] [Google Scholar]
  36. Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
  37. Suenaga M., Lee S., Park N. G., Aoyagi H., Kato T., Umeda A., Amako K. Basic amphipathic helical peptides induce destabilization and fusion of acidic and neutral liposomes. Biochim Biophys Acta. 1989 May 19;981(1):143–150. doi: 10.1016/0005-2736(89)90092-8. [DOI] [PubMed] [Google Scholar]
  38. Yamada K., Natori S. Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly). Biochem J. 1994 Mar 15;298(Pt 3):623–628. doi: 10.1042/bj2980623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamada K., Natori S. Purification, sequence and antibacterial activity of two novel sapecin homologues from Sarcophaga embryonic cells: similarity of sapecin B to charybdotoxin. Biochem J. 1993 Apr 1;291(Pt 1):275–279. doi: 10.1042/bj2910275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yamashita T., Yomogida S., Nagaoka I., Saito K. Effect of a chemical or proteolytic modification on the biological activity of guinea-pig cationic peptide. Biochim Biophys Acta. 1995 Apr 13;1243(3):295–299. doi: 10.1016/0304-4165(94)00139-o. [DOI] [PubMed] [Google Scholar]
  41. Zasloff M., Martin B., Chen H. C. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci U S A. 1988 Feb;85(3):910–913. doi: 10.1073/pnas.85.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhong L., Putnam R. J., Johnson W. C., Jr, Rao A. G. Design and synthesis of amphipathic antimicrobial peptides. Int J Pept Protein Res. 1995 Apr;45(4):337–347. doi: 10.1111/j.1399-3011.1995.tb01047.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES