Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):113–119. doi: 10.1042/bj3340113

The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076.

N J Pearce 1, J W Yates 1, T A Berkhout 1, B Jackson 1, D Tew 1, H Boyd 1, P Camilleri 1, P Sweeney 1, A D Gribble 1, A Shaw 1, P H Groot 1
PMCID: PMC1219669  PMID: 9693110

Abstract

ATP citrate (pro-S)-lyase (EC 4.1.3.8), a cytosolic enzyme that generates acetyl-CoA for cholesterol and fatty acid synthesis de novo, is a potential target for hypolipidaemic intervention. Here we describe the biological effects of the inhibition of ATP citrate-lyase on lipid metabolism in Hep G2 cells, and plasma lipids in rats and dogs, by using SB-204990, the cell-penetrant gamma-lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076 (Ki=1 microM). Consistent with an important role of ATP citrate-lyase in the supply of acetyl-CoA units for lipid synthesis de novo, SB-204990 inhibited cholesterol synthesis and fatty acid synthesis in Hep G2 cells (dose-related inhibition of up to 91% and 82% respectively) and rats (76% and 39% respectively). SB-204990, when administered orally to rats, was absorbed into the systemic circulation; pharmacologically relevant concentrations of SB-201076 were recovered in the liver. When administered in the diet (0.05-0. 25%, w/w) for 1 week, SB-204990 caused a dose-related decrease in plasma cholesterol (by up to 46%) and triglyceride levels (by up to 80%) in rats. This hypolipidaemic effect could be explained, at least in part, by a decrease (up to 48%) in hepatic very-low-density lipoprotein (VLDL) production as measured by the accumulation of VLDL in plasma after injection of Triton WR-1339. SB-204990 (25 mg/kg per day) also decreased plasma cholesterol levels (by up to 23%) and triglyceride levels (by up to 38%) in the dog, preferentially decreasing low-density lipoprotein compared with high-density lipoprotein cholesterol levels. Overall these results are consistent with the concept that ATP citrate-lyase is an important enzyme in controlling substrate supply for lipid synthesis de novo and a potential enzyme target for hypolipidaemic intervention.

Full Text

The Full Text of this article is available as a PDF (516.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbeeny C. M., Meyers D. S., Bergquist K. E., Gregg R. E. Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster. J Lipid Res. 1992 Jun;33(6):843–851. [PubMed] [Google Scholar]
  2. Azain M. J., Fukuda N., Chao F. F., Yamamoto M., Ontko J. A. Contributions of fatty acid and sterol synthesis to triglyceride and cholesterol secretion by the perfused rat liver in genetic hyperlipemia and obesity. J Biol Chem. 1985 Jan 10;260(1):174–181. [PubMed] [Google Scholar]
  3. Barth C., Hackenschmidt J., Ullmann H., Decker K. Inhibition of cholesterol synthesis by (-)-hydroxycitrate in perfused rat liver. Evidence for an extramitochondrial mevalonate synthesis from acetyl coenzyme A. FEBS Lett. 1972 May 15;22(3):343–346. doi: 10.1016/0014-5793(72)80266-7. [DOI] [PubMed] [Google Scholar]
  4. Berkhout T. A., Havekes L. M., Pearce N. J., Groot P. H. The effect of (-)-hydroxycitrate on the activity of the low-density-lipoprotein receptor and 3-hydroxy-3-methylglutaryl-CoA reductase levels in the human hepatoma cell line Hep G2. Biochem J. 1990 Nov 15;272(1):181–186. doi: 10.1042/bj2720181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berkhout T. A., Simon H. M., Jackson B., Yates J., Pearce N., Groot P. H., Bentzen C., Niesor E., Kerns W. D., Suckling K. E. SR-12813 lowers plasma cholesterol in beagle dogs by decreasing cholesterol biosynthesis. Atherosclerosis. 1997 Sep;133(2):203–212. doi: 10.1016/s0021-9150(97)00131-7. [DOI] [PubMed] [Google Scholar]
  6. Brunengraber H., Sabine J. R., Boutry M., Lowenstein J. M. 3- -Hydroxysterol synthesis by the liver. Arch Biochem Biophys. 1972 Jun;150(2):392–396. doi: 10.1016/0003-9861(72)90054-9. [DOI] [PubMed] [Google Scholar]
  7. Chao Y., Chen J. S., Hunt V. M., Kuron G. W., Karkas J. D., Liou R., Alberts A. W. Lowering of plasma cholesterol levels in animals by lovastatin and simvastatin. Eur J Clin Pharmacol. 1991;40 (Suppl 1):S11–S14. [PubMed] [Google Scholar]
  8. Cheema-Dhadli S., Halperin M. L., Leznoff C. C. Inhibition of enzymes which interact with citrate by (--)hydroxycitrate and 1,2,3,-tricarboxybenzene. Eur J Biochem. 1973 Sep 21;38(1):98–102. doi: 10.1111/j.1432-1033.1973.tb03038.x. [DOI] [PubMed] [Google Scholar]
  9. Chen S., Ogawa A., Ohneda M., Unger R. H., Foster D. W., McGarry J. D. More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic beta-cell signaling. Diabetes. 1994 Jul;43(7):878–883. doi: 10.2337/diab.43.7.878. [DOI] [PubMed] [Google Scholar]
  10. Davis R. A., Boogaerts J. R., Borchardt R. A., Malone-McNeal M., Archambault-Schexnayder J. Intrahepatic assembly of very low density lipoproteins. Varied synthetic response of individual apolipoproteins to fasting. J Biol Chem. 1985 Nov 15;260(26):14137–14144. [PubMed] [Google Scholar]
  11. Dietschy J. M., Spady D. K. Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res. 1984 Dec 15;25(13):1469–1476. [PubMed] [Google Scholar]
  12. Duerden J. M., Gibbons G. F. Secretion and storage of newly synthesized hepatic triacylglycerol fatty acids in vivo in different nutritional states and in diabetes. Biochem J. 1988 Nov 1;255(3):929–935. doi: 10.1042/bj2550929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elshourbagy N. A., Near J. C., Kmetz P. J., Sathe G. M., Southan C., Strickler J. E., Gross M., Young J. F., Wells T. N., Groot P. H. Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem. 1990 Jan 25;265(3):1430–1435. [PubMed] [Google Scholar]
  14. Elshourbagy N. A., Near J. C., Kmetz P. J., Wells T. N., Groot P. H., Saxty B. A., Hughes S. A., Franklin M., Gloger I. S. Cloning and expression of a human ATP-citrate lyase cDNA. Eur J Biochem. 1992 Mar 1;204(2):491–499. doi: 10.1111/j.1432-1033.1992.tb16659.x. [DOI] [PubMed] [Google Scholar]
  15. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992 Nov;33(11):1569–1582. [PubMed] [Google Scholar]
  16. Fukuda N., Ontko J. A. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver. J Lipid Res. 1984 Aug;25(8):831–842. [PubMed] [Google Scholar]
  17. Gibbons G. F. Assembly and secretion of hepatic very-low-density lipoprotein. Biochem J. 1990 May 15;268(1):1–13. doi: 10.1042/bj2680001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gibbons G. F., Pullinger C. R., Munday M. R., Williamson D. H. Regulation of cholesterol synthesis in the liver and mammary gland of the lactating rat. Biochem J. 1983 Jun 15;212(3):843–848. doi: 10.1042/bj2120843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gribble A. D., Dolle R. E., Shaw A., McNair D., Novelli R., Novelli C. E., Slingsby B. P., Shah V. P., Tew D., Saxty B. A. ATP-citrate lyase as a target for hypolipidemic intervention. Design and synthesis of 2-substituted butanedioic acids as novel, potent inhibitors of the enzyme. J Med Chem. 1996 Aug 30;39(18):3569–3584. doi: 10.1021/jm960167w. [DOI] [PubMed] [Google Scholar]
  20. Hamilton J. G., Sullivan A. C., Kritchevsky D. Hupolipidemic activity of (--)-hydroxycitrate. Lipids. 1977 Jan;12(1):1–9. doi: 10.1007/BF02532964. [DOI] [PubMed] [Google Scholar]
  21. Jungas R. L. Fatty acid synthesis in adipose tissue incubated in tritiated water. Biochemistry. 1968 Oct;7(10):3708–3717. doi: 10.1021/bi00850a050. [DOI] [PubMed] [Google Scholar]
  22. Kasim S. E., LeBoeuf R. C., Khilnani S., Tallapaka L., Dayananda D., Jen K. L. Mechanisms of triglyceride-lowering effect of an HMG-CoA reductase inhibitor in a hypertriglyceridemic animal model, the Zucker obese rat. J Lipid Res. 1992 Jan;33(1):1–7. [PubMed] [Google Scholar]
  23. Khan B. V., Fungwe T. V., Wilcox H. G., Heimberg M. Cholesterol is required for the secretion of the very-low-density lipoprotein: in vivo studies. Biochim Biophys Acta. 1990 Jun 14;1044(3):297–304. doi: 10.1016/0005-2760(90)90073-7. [DOI] [PubMed] [Google Scholar]
  24. Khan B., Wilcox H. G., Heimberg M. Cholesterol is required for secretion of very-low-density lipoprotein by rat liver. Biochem J. 1989 Mar 15;258(3):807–816. doi: 10.1042/bj2580807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kovanen P. T., Bilheimer D. W., Goldstein J. L., Jaramillo J. J., Brown M. S. Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1194–1198. doi: 10.1073/pnas.78.2.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lowenstein J. M., Brunengraber H. Hydroxycitrate. Methods Enzymol. 1981;72:486–497. doi: 10.1016/s0076-6879(81)72038-x. [DOI] [PubMed] [Google Scholar]
  27. Lowenstein J. M. Effect of (-)-hydroxycitrate on fatty acid synthesis by rat liver in vivo. J Biol Chem. 1971 Feb 10;246(3):629–632. [PubMed] [Google Scholar]
  28. McGarry J. D., Mannaerts G. P., Foster D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265–270. doi: 10.1172/JCI108764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Otway S., Robinson D. S. The use of a non-ionic detergent (Triton WR 1339) to determine rates of triglyceride entry into the circulation of the rat under different physiological conditions. J Physiol. 1967 May;190(2):321–332. doi: 10.1113/jphysiol.1967.sp008211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parker R. A., Kariya T., Grisar J. M., Petrow V. 5-(Tetradecyloxy)-2-furancarboxylic acid and related hypolipidemic fatty acid-like alkyloxyarylcarboxylic acids. J Med Chem. 1977 Jun;20(6):781–791. doi: 10.1021/jm00216a009. [DOI] [PubMed] [Google Scholar]
  31. Riddell D., Bright C. P., Burton B. J., Bush R. C., Harris N. V., Hele D., Moore U. M., Naik K., Parrott D. P., Smith C. Hypolipidaemic properties of a potent and bioavailable alkylsulphinyl-diphenylimidazole ACAT inhibitor (RP 73163) in animals fed diets low in cholesterol. Biochem Pharmacol. 1996 Oct 25;52(8):1177–1186. doi: 10.1016/0006-2952(96)00455-8. [DOI] [PubMed] [Google Scholar]
  32. Stansbie D., Brownsey R. W., Crettaz M., Denton R. M. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J. 1976 Nov 15;160(2):413–416. doi: 10.1042/bj1600413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sullivan A. C., Hamilton J. G., Miller O. N., Wheatley V. R. Inhibition of lipogenesis in rat liver by (-)-hydroxycitrate. Arch Biochem Biophys. 1972 May;150(1):183–190. doi: 10.1016/0003-9861(72)90025-2. [DOI] [PubMed] [Google Scholar]
  34. Sullivan C., Triscari J. Metabolic regulation as a control for lipid disorders. I. Influence of (--)-hydroxycitrate on experimentally induced obesity in the rodent. Am J Clin Nutr. 1977 May;30(5):767–776. doi: 10.1093/ajcn/30.5.767. [DOI] [PubMed] [Google Scholar]
  35. Tsujita Y., Kuroda M., Shimada Y., Tanzawa K., Arai M., Kaneko I., Tanaka M., Masuda H., Tarumi C., Watanabe Y. CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase: tissue-selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Biochim Biophys Acta. 1986 Jun 11;877(1):50–60. doi: 10.1016/0005-2760(86)90117-7. [DOI] [PubMed] [Google Scholar]
  36. Watson J. A., Fang M., Lowenstein J. M. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch Biochem Biophys. 1969 Dec;135(1):209–217. doi: 10.1016/0003-9861(69)90532-3. [DOI] [PubMed] [Google Scholar]
  37. Wells T. N. ATP-citrate lyase from rat liver. Characterisation of the citryl-enzyme complexes. Eur J Biochem. 1991 Jul 1;199(1):163–168. doi: 10.1111/j.1432-1033.1991.tb16105.x. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto M., Fukuda N., Triscari J., Sullivan A. C., Ontko J. A. Decreased hepatic production of very low density lipoproteins following activation of fatty acid oxidation by Ro 22-0654. J Lipid Res. 1985 Oct;26(10):1196–1204. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES