Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):133–139. doi: 10.1042/bj3340133

Vitronectin binds to the gonococcal adhesin OpaA through a glycosaminoglycan molecular bridge.

T D Duensing 1, J P Putten 1
PMCID: PMC1219671  PMID: 9693112

Abstract

Several bacterial pathogens including Neisseria gonorrhoeae bind the human serum glycoprotein vitronectin. We aimed at defining the gonococcal receptor for vitronectin. Ligand blots demonstrated that vitronectin bound specifically to the heparin-binding outer-membrane protein OpaA, but that coating OpaA with the sulphated polysaccharide heparin was required for the interaction to occur. Bound vitronectin could be dissociated from OpaA-heparin-vitronectin complexes by the addition of excess heparin, indicating that sulphated polysaccharides provided the main linkage between the two proteins. Binding assays with intact micro-organisms substantiated the requirement of sulphated polysaccharides such as heparin and dextran sulphate for the efficient binding of vitronectin to OpaA+ gonococci. This was underscored by the increased binding of vitronectin to gonococci that had been preincubated with saturating concentrations of dextran sulphate, as opposed to the inhibition of vitronectin binding observed when bacteria were incubated simultaneously with vitronectin and saturating concentrations of dextran sulphate. Binding assays with dextran sulphates of various sizes indicated that vitronectin binding correlated with the size of the polysaccharide rather than with the amount of OpaA produced by the bacteria. The inability of zero-length cross-linking agents to couple vitronectin to OpaA provided further evidence that sulphated polysaccharides formed the linkage between vitronectin and OpaA. Infection experiments demonstrated that proteoglycan-deficient Chinese hamster ovary cells efficiently internalized dextran sulphate/vitronectin-coated gonococci, suggesting that soluble sulphated polysaccharides could substitute for cell surface glycosaminoglycans in the internalization process. On the basis of our results, we propose a novel mechanism of vitronectin binding in which sulphated polysaccharides act as molecular bridges, linking the glycosaminoglycan-binding sites of vitronectin and gonococcal OpaA.

Full Text

The Full Text of this article is available as a PDF (319.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes D. W., Reing J. E., Amos B. Heparin-binding properties of human serum spreading factor. J Biol Chem. 1985 Aug 5;260(16):9117–9122. [PubMed] [Google Scholar]
  2. Bos M. P., Grunert F., Belland R. J. Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae. Infect Immun. 1997 Jun;65(6):2353–2361. doi: 10.1128/iai.65.6.2353-2361.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen T., Belland R. J., Wilson J., Swanson J. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J Exp Med. 1995 Aug 1;182(2):511–517. doi: 10.1084/jem.182.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen T., Grunert F., Medina-Marino A., Gotschlich E. C. Several carcinoembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins. J Exp Med. 1997 May 5;185(9):1557–1564. doi: 10.1084/jem.185.9.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherny R. C., Honan M. A., Thiagarajan P. Site-directed mutagenesis of the arginine-glycine-aspartic acid in vitronectin abolishes cell adhesion. J Biol Chem. 1993 May 5;268(13):9725–9729. [PubMed] [Google Scholar]
  6. Chhatwal G. S., Preissner K. T., Müller-Berghaus G., Blobel H. Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun. 1987 Aug;55(8):1878–1883. doi: 10.1128/iai.55.8.1878-1883.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Declerck P. J., De Mol M., Alessi M. C., Baudner S., Pâques E. P., Preissner K. T., Müller-Berghaus G., Collen D. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem. 1988 Oct 25;263(30):15454–15461. [PubMed] [Google Scholar]
  8. Dehio M., Gómez-Duarte O. G., Dehio C., Meyer T. F. Vitronectin-dependent invasion of epithelial cells by Neisseria gonorrhoeae involves alpha(v) integrin receptors. FEBS Lett. 1998 Mar 6;424(1-2):84–88. doi: 10.1016/s0014-5793(98)00144-6. [DOI] [PubMed] [Google Scholar]
  9. Duensing T. D., van Putten J. P. Vitronectin mediates internalization of Neisseria gonorrhoeae by Chinese hamster ovary cells. Infect Immun. 1997 Mar;65(3):964–970. doi: 10.1128/iai.65.3.964-970.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Esko J. D. Genetic analysis of proteoglycan structure, function and metabolism. Curr Opin Cell Biol. 1991 Oct;3(5):805–816. doi: 10.1016/0955-0674(91)90054-3. [DOI] [PubMed] [Google Scholar]
  11. Gebb C., Hayman E. G., Engvall E., Ruoslahti E. Interaction of vitronectin with collagen. J Biol Chem. 1986 Dec 15;261(35):16698–16703. [PubMed] [Google Scholar]
  12. Gibson A., Baburaj K., Day D. E., Verhamme I., Shore J. D., Peterson C. B. The use of fluorescent probes to characterize conformational changes in the interaction between vitronectin and plasminogen activator inhibitor-1. J Biol Chem. 1997 Feb 21;272(8):5112–5121. doi: 10.1074/jbc.272.8.5112. [DOI] [PubMed] [Google Scholar]
  13. Gray-Owen S. D., Dehio C., Haude A., Grunert F., Meyer T. F. CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes. EMBO J. 1997 Jun 16;16(12):3435–3445. doi: 10.1093/emboj/16.12.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffith M. J. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem. 1982 Jul 10;257(13):7360–7365. [PubMed] [Google Scholar]
  15. Gómez-Duarte O. G., Dehio M., Guzmán C. A., Chhatwal G. S., Dehio C., Meyer T. F. Binding of vitronectin to opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect Immun. 1997 Sep;65(9):3857–3866. doi: 10.1128/iai.65.9.3857-3866.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hayashi M., Akama T., Kono I., Kashiwagi H. Activation of vitronectin (serum spreading factor) binding of heparin by denaturing agents. J Biochem. 1985 Oct;98(4):1135–1138. doi: 10.1093/oxfordjournals.jbchem.a135363. [DOI] [PubMed] [Google Scholar]
  17. Hayman E. G., Pierschbacher M. D., Ohgren Y., Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4003–4007. doi: 10.1073/pnas.80.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hildebrand A., Schweigerer L., Teschemacher H. Characterization and identification of heparin-induced nonopioid-binding sites for beta-endorphin in human plasma. J Biol Chem. 1988 Feb 15;263(5):2436–2441. [PubMed] [Google Scholar]
  19. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  20. Ill C. R., Ruoslahti E. Association of thrombin-antithrombin III complex with vitronectin in serum. J Biol Chem. 1985 Dec 15;260(29):15610–15615. [PubMed] [Google Scholar]
  21. Ishikawa M., Hayashi M. Activation of the collagen-binding of endogenous serum vitronectin by heating, urea and glycosaminoglycans. Biochim Biophys Acta. 1992 May 22;1121(1-2):173–177. doi: 10.1016/0167-4838(92)90351-d. [DOI] [PubMed] [Google Scholar]
  22. Izumi M., Shimo-Oka T., Morishita N., Ii I., Hayashi M. Identification of the collagen-binding domain of vitronectin using monoclonal antibodies. Cell Struct Funct. 1988 Jun;13(3):217–225. doi: 10.1247/csf.13.217. [DOI] [PubMed] [Google Scholar]
  23. Johnston K. H., Holmes K. K., Gotschlich E. C. The serological classification of Neisseria gonorrhoeae. I. Isolation of the outer membrane complex responsible for serotypic specificity. J Exp Med. 1976 Apr 1;143(4):741–758. doi: 10.1084/jem.143.4.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kunkel G. R., Mehrabian M., Martinson H. G. Contact-site cross-linking agents. Mol Cell Biochem. 1981 Jan 20;34(1):3–13. doi: 10.1007/BF02354846. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Liang O. D., Flock J. I., Wadström T. Evidence that the heparin-binding consensus sequence of vitronectin is recognized by Staphylococcus aureus. J Biochem. 1994 Aug;116(2):457–463. doi: 10.1093/oxfordjournals.jbchem.a124546. [DOI] [PubMed] [Google Scholar]
  27. Liang O. D., Maccarana M., Flock J. I., Paulsson M., Preissner K. T., Wadström T. Multiple interactions between human vitronectin and Staphylococcus aureus. Biochim Biophys Acta. 1993 Nov 25;1225(1):57–63. doi: 10.1016/0925-4439(93)90122-h. [DOI] [PubMed] [Google Scholar]
  28. Limper A. H., Standing J. E., Hoffman O. A., Castro M., Neese L. W. Vitronectin binds to Pneumocystis carinii and mediates organism attachment to cultured lung epithelial cells. Infect Immun. 1993 Oct;61(10):4302–4309. doi: 10.1128/iai.61.10.4302-4309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lyon M., Rushton G., Gallagher J. T. The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific. J Biol Chem. 1997 Jul 18;272(29):18000–18006. doi: 10.1074/jbc.272.29.18000. [DOI] [PubMed] [Google Scholar]
  30. Mandrell R. E., Zollinger W. D. Use of a zwitterionic detergent for the restoration of the antibody-binding capacity of electroblotted meningococcal outer membrane proteins. J Immunol Methods. 1984 Feb 24;67(1):1–11. doi: 10.1016/0022-1759(84)90080-2. [DOI] [PubMed] [Google Scholar]
  31. McGavin M. H., Krajewska-Pietrasik D., Rydén C., Hök M. Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect Immun. 1993 Jun;61(6):2479–2485. doi: 10.1128/iai.61.6.2479-2485.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olson S. T., Björk I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991 Apr 5;266(10):6353–6364. [PubMed] [Google Scholar]
  33. Pannekoek Y., van Putten J. P., Dankert J. Identification and molecular analysis of a 63-kilodalton stress protein from Neisseria gonorrhoeae. J Bacteriol. 1992 Nov;174(21):6928–6937. doi: 10.1128/jb.174.21.6928-6937.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Podack E. R., Kolb W. P., Müller-Eberhard H. J. The C5b-6 complex: formation, isolation, and inhibition of its activity by lipoprotein and the S-protein of human serum. J Immunol. 1978 Jun;120(6):1841–1848. [PubMed] [Google Scholar]
  35. Preissner K. T., Grulich-Henn J., Ehrlich H. J., Declerck P., Justus C., Collen D., Pannekoek H., Müller-Berghaus G. Structural requirements for the extracellular interaction of plasminogen activator inhibitor 1 with endothelial cell matrix-associated vitronectin. J Biol Chem. 1990 Oct 25;265(30):18490–18498. [PubMed] [Google Scholar]
  36. Preissner K. T., Zwicker L., Müller-Berghaus G. Formation, characterization and detection of a ternary complex between S protein, thrombin and antithrombin III in serum. Biochem J. 1987 Apr 1;243(1):105–111. doi: 10.1042/bj2430105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ringnér M., Paulsson M., Wadström T. Vitronectin binding by Helicobacter pylori. FEMS Microbiol Immunol. 1992 Oct;5(4):219–224. doi: 10.1111/j.1574-6968.1992.tb05904.x. [DOI] [PubMed] [Google Scholar]
  38. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  39. Sane D. C., Moser T. L., Parker C. J., Seiffert D., Loskutoff D. J., Greenberg C. S. Highly sulfated glycosaminoglycans augment the cross-linking of vitronectin by guinea pig liver transglutaminase. Functional studies of the cross-linked vitronectin multimers. J Biol Chem. 1990 Feb 25;265(6):3543–3548. [PubMed] [Google Scholar]
  40. Seiffert D., Loskutoff D. J. Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. J Biol Chem. 1991 Feb 15;266(5):2824–2830. [PubMed] [Google Scholar]
  41. Seiffert D. The glycosaminoglycan binding site governs ligand binding to the somatomedin B domain of vitronectin. J Biol Chem. 1997 Apr 11;272(15):9971–9978. doi: 10.1074/jbc.272.15.9971. [DOI] [PubMed] [Google Scholar]
  42. Swanson J., Barrera O., Sola J., Boslego J. Expression of outer membrane protein II by gonococci in experimental gonorrhea. J Exp Med. 1988 Dec 1;168(6):2121–2129. doi: 10.1084/jem.168.6.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tomasini B. R., Mosher D. F. Conformational states of vitronectin: preferential expression of an antigenic epitope when vitronectin is covalently and noncovalently complexed with thrombin-antithrombin III or treated with urea. Blood. 1988 Sep;72(3):903–912. [PubMed] [Google Scholar]
  44. Van Putten J. P., Weel J. F., Grassmé H. U. Measurements of invasion by antibody labeling and electron microscopy. Methods Enzymol. 1994;236:420–437. doi: 10.1016/0076-6879(94)36031-6. [DOI] [PubMed] [Google Scholar]
  45. Virji M., Makepeace K., Ferguson D. J., Watt S. M. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol Microbiol. 1996 Dec;22(5):941–950. doi: 10.1046/j.1365-2958.1996.01551.x. [DOI] [PubMed] [Google Scholar]
  46. Wedege E., Bryn K., Frøholm L. O. Restoration of antibody binding to blotted meningococcal outer membrane proteins using various detergents. J Immunol Methods. 1988 Oct 4;113(1):51–59. doi: 10.1016/0022-1759(88)90381-x. [DOI] [PubMed] [Google Scholar]
  47. Wei Y., Waltz D. A., Rao N., Drummond R. J., Rosenberg S., Chapman H. A. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem. 1994 Dec 23;269(51):32380–32388. [PubMed] [Google Scholar]
  48. Wiman B., Almquist A., Sigurdardottir O., Lindahl T. Plasminogen activator inhibitor 1 (PAI) is bound to vitronectin in plasma. FEBS Lett. 1988 Dec 19;242(1):125–128. doi: 10.1016/0014-5793(88)80999-2. [DOI] [PubMed] [Google Scholar]
  49. Yatohgo T., Izumi M., Kashiwagi H., Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct. 1988 Aug;13(4):281–292. doi: 10.1247/csf.13.281. [DOI] [PubMed] [Google Scholar]
  50. Zareba T. W., Pascu C., Hryniewicz W., Wadström T. Binding of extracellular matrix proteins by enterococci. Curr Microbiol. 1997 Jan;34(1):6–11. doi: 10.1007/s002849900135. [DOI] [PubMed] [Google Scholar]
  51. Zhao Y., Sane D. C. The cell attachment and spreading activity of vitronectin is dependent on the Arg-Gly-Asp sequence. Analysis by construction of RGD and domain deletion mutants. Biochem Biophys Res Commun. 1993 Apr 30;192(2):575–582. doi: 10.1006/bbrc.1993.1454. [DOI] [PubMed] [Google Scholar]
  52. van Putten J. P., Hayes S. F., Duensing T. D. Natural proteoglycan receptor analogs determine the dynamics of Opa adhesin-mediated gonococcal infection of Chang epithelial cells. Infect Immun. 1997 Dec;65(12):5028–5034. doi: 10.1128/iai.65.12.5028-5034.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. van Putten J. P., Paul S. M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995 May 15;14(10):2144–2154. doi: 10.1002/j.1460-2075.1995.tb07208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES