Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):219–224. doi: 10.1042/bj3340219

Thermal inactivation and chaperonin-mediated renaturation of mitochondrial aspartate aminotransferase.

J M Lawton 1, S Doonan 1
PMCID: PMC1219682  PMID: 9693123

Abstract

Mitochondrial aspartate aminotransferase is inactivated irreversibly on heating. The inactivated protein aggregates, but aggregation is prevented by the presence of the chaperonin 60 from Escherichia coli (GroEL). The chaperonin increases the rate of thermal inactivation in the temperature range 55-65 degrees C but not at lower temperatures. It has previously been shown [Twomey and Doonan (1997) Biochim. Biophys. Acta 1342, 37-44] that the enzyme switches to a modified, but catalytically active, conformation at approx. 55-60 degrees C and the present results show that this conformation is recognized by and binds to GroEL. The thermally inactivated protein can be released from GroEL in an active form by the addition of chaperonin 10 from E. coli (GroES)/ATP, showing that inactivation is not the result of irreversible chemical changes. These results suggest that the irreversibility of thermal inactivation is due to the formation of an altered conformation with a high kinetic barrier to refolding rather than to any covalent changes. In the absence of chaperonin the unfolded molecules aggregate but this is a consequence, rather than the cause, of irreversible inactivation.

Full Text

The Full Text of this article is available as a PDF (324.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYD J. W. The intracellular distribution, latency and electrophoretic mobility of L-glutamate-oxaloacetate transaminase from rat liver. Biochem J. 1961 Nov;81:434–441. doi: 10.1042/bj0810434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barra D., Bossa F., Doonan S., Fahmy H. M., Martini F., Hughes G. J. Large-scale purification and some properties of the mitochondrial aspartate aminotransferase from pig heart. Eur J Biochem. 1976 May 1;64(2):519–526. doi: 10.1111/j.1432-1033.1976.tb10331.x. [DOI] [PubMed] [Google Scholar]
  3. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F. X., Kiefhaber T. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry. 1991 Feb 12;30(6):1586–1591. doi: 10.1021/bi00220a020. [DOI] [PubMed] [Google Scholar]
  4. Burston S. G., Ranson N. A., Clarke A. R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J Mol Biol. 1995 May 26;249(1):138–152. doi: 10.1006/jmbi.1995.0285. [DOI] [PubMed] [Google Scholar]
  5. Cubellis M. V., Arnone M. I., Birolo L., Sannia G., Marino G. Comparative studies on thermophilicity and thermostability of aspartate aminotransferases. Biotechnol Appl Biochem. 1993 Dec;18(Pt 3):417–425. [PubMed] [Google Scholar]
  6. Doonan S., Martini F., Angelaccio S., Pascarella S., Barra D., Bossa F. The complete amino acid sequences of cytosolic and mitochondrial aspartate aminotransferases from horse heart, and inferences on evolution of the isoenzymes. J Mol Evol. 1986;23(4):328–335. doi: 10.1007/BF02100642. [DOI] [PubMed] [Google Scholar]
  7. Eichele G., Ford G. C., Glor M., Jansonius J. N., Mavrides C., Christen P. The three-dimensional structure of mitochondrial aspartate aminotransferase at 4.5 A resolution. J Mol Biol. 1979 Sep 5;133(1):161–180. doi: 10.1016/0022-2836(79)90255-9. [DOI] [PubMed] [Google Scholar]
  8. Fayet O., Louarn J. M., Georgopoulos C. Suppression of the Escherichia coli dnaA46 mutation by amplification of the groES and groEL genes. Mol Gen Genet. 1986 Mar;202(3):435–445. doi: 10.1007/BF00333274. [DOI] [PubMed] [Google Scholar]
  9. Fenton W. A., Horwich A. L. GroEL-mediated protein folding. Protein Sci. 1997 Apr;6(4):743–760. doi: 10.1002/pro.5560060401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayer-Hartl M. K., Hartl F. U. A comment on: 'The aromatic amino acid content of the bacterial chaperone protein groEL (cpn60): evidence for the presence of a single tryptophan', by N.C. Price, S.M. Kelly, S. Wood and A. auf der Mauer (1991) FEBS Lett. 292, 9-12. FEBS Lett. 1993 Mar 29;320(1):83–85. doi: 10.1016/0014-5793(93)81663-k. [DOI] [PubMed] [Google Scholar]
  11. Hayer-Hartl M. K., Martin J., Hartl F. U. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science. 1995 Aug 11;269(5225):836–841. doi: 10.1126/science.7638601. [DOI] [PubMed] [Google Scholar]
  12. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  13. Höll-Neugebauer B., Rudolph R., Schmidt M., Buchner J. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry. 1991 Dec 17;30(50):11609–11614. doi: 10.1021/bi00114a001. [DOI] [PubMed] [Google Scholar]
  14. Jackson G. S., Staniforth R. A., Halsall D. J., Atkinson T., Holbrook J. J., Clarke A. R., Burston S. G. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry. 1993 Mar 16;32(10):2554–2563. doi: 10.1021/bi00061a013. [DOI] [PubMed] [Google Scholar]
  15. KARMEN A. A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum. J Clin Invest. 1955 Jan;34(1):131–133. [PubMed] [Google Scholar]
  16. Laminet A. A., Ziegelhoffer T., Georgopoulos C., Plückthun A. The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J. 1990 Jul;9(7):2315–2319. doi: 10.1002/j.1460-2075.1990.tb07403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lissin N. M., Venyaminov SYu, Girshovich A. S. (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature. 1990 Nov 22;348(6299):339–342. doi: 10.1038/348339a0. [DOI] [PubMed] [Google Scholar]
  18. Llorca O., Marco S., Carrascosa J. L., Valpuesta J. M. Conformational changes in the GroEL oligomer during the functional cycle. J Struct Biol. 1997 Feb;118(1):31–42. doi: 10.1006/jsbi.1996.3832. [DOI] [PubMed] [Google Scholar]
  19. Martin J., Langer T., Boteva R., Schramel A., Horwich A. L., Hartl F. U. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature. 1991 Jul 4;352(6330):36–42. doi: 10.1038/352036a0. [DOI] [PubMed] [Google Scholar]
  20. Mattingly J. R., Jr, Iriarte A., Martinez-Carrion M. Homologous proteins with different affinities for groEL. The refolding of the aspartate aminotransferase isozymes at varying temperatures. J Biol Chem. 1995 Jan 20;270(3):1138–1148. doi: 10.1074/jbc.270.3.1138. [DOI] [PubMed] [Google Scholar]
  21. Mozhaev V. V. Mechanism-based strategies for protein thermostabilization. Trends Biotechnol. 1993 Mar;11(3):88–95. doi: 10.1016/0167-7799(93)90057-G. [DOI] [PubMed] [Google Scholar]
  22. Querol E., Perez-Pons J. A., Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Protein Eng. 1996 Mar;9(3):265–271. doi: 10.1093/protein/9.3.265. [DOI] [PubMed] [Google Scholar]
  23. Russell R. J., Taylor G. L. Engineering thermostability: lessons from thermophilic proteins. Curr Opin Biotechnol. 1995 Aug;6(4):370–374. doi: 10.1016/0958-1669(95)80064-6. [DOI] [PubMed] [Google Scholar]
  24. Sandmeier E., Christen P. Mitochondrial aspartate aminotransferase 27/32-410. Partially active enzyme derivative produced by limited proteolytic cleavage of native enzyme. J Biol Chem. 1980 Nov 10;255(21):10284–10289. [PubMed] [Google Scholar]
  25. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  26. Todd M. J., Viitanen P. V., Lorimer G. H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science. 1994 Jul 29;265(5172):659–666. doi: 10.1126/science.7913555. [DOI] [PubMed] [Google Scholar]
  27. Twomey C. M., Doonan S. A comparative study of the thermal inactivation of cytosolic and mitochondrial aspartate aminotransferases. Biochim Biophys Acta. 1997 Sep 26;1342(1):37–44. doi: 10.1016/s0167-4838(97)00075-7. [DOI] [PubMed] [Google Scholar]
  28. Viitanen P. V., Donaldson G. K., Lorimer G. H., Lubben T. H., Gatenby A. A. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry. 1991 Oct 8;30(40):9716–9723. doi: 10.1021/bi00104a021. [DOI] [PubMed] [Google Scholar]
  29. West S. M., Price N. C. The unfolding and attempted refolding of mitochondrial aspartate aminotransferase from pig heart. Biochem J. 1990 Jan 1;265(1):45–50. doi: 10.1042/bj2650045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. West S. M., Price N. C. The unfolding and refolding of cytoplasmic aspartate aminotransferase from pig heart. Biochem J. 1989 Jul 1;261(1):189–196. doi: 10.1042/bj2610189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Widmann M., Christen P. Differential effects of molecular chaperones on refolding of homologous proteins. FEBS Lett. 1995 Dec 27;377(3):481–484. doi: 10.1016/0014-5793(95)01406-3. [DOI] [PubMed] [Google Scholar]
  32. Zahn R., Perrett S., Fersht A. R. Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity. J Mol Biol. 1996 Aug 9;261(1):43–61. doi: 10.1006/jmbi.1996.0440. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES