Abstract
1. Rat soleus strips were incubated with 5 mM glucose, after which tissue metabolites were measured. Alternatively, muscle strips were incubated with 5 mM glucose and 0.2 mM palmitate, and the formation of 14CO2 from exogenous palmitate or from fatty acids released from prelabelled glycerolipids was measured. 2. Etomoxir, which inhibits the mitochondrial overt form of carnitine palmitoyltransferase (CPT1), increased the tissue content of long-chain fatty acyl-CoA esters and decreased the ratio of fatty acylcarnitine to fatty acyl-CoA, suggesting that such changes could be a diagnostic for the inhibition of CPT1 3. Over a range of incubation conditions there was a positive correlation between the tissue contents of malonyl-CoA and long-chain fatty acyl-CoA esters. Under conditions in which these two metabolites increased in content (i.e. with insulin or with 3 mM dichloroacetate) there was a corresponding decrease in the ratio of fatty acylcarnitine to fatty acyl-CoA and a decrease in beta-oxidation. Isoprenaline or palmitate (0.5 mM) opposed the effect of insulin, decreasing the contents of malonyl-CoA and long-chain fatty acyl-CoA, increasing the ratio of fatty acylcarnitine to fatty acyl-CoA and increasing beta-oxidation. These findings are consistent with the notion that all of these agents can cause the acute regulation of CPT1 in Type I skeletal muscle. 4. The addition of 5-amino-4-imidazolecarboxamide ribonucleoside (AICAriboside) to cause activation of the AMP-activated protein kinase decreased the tissue content of malonyl-CoA. AICAriboside also had an antilipolytic effect in the muscle strips. 5. Measurements were made of the activities of ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthase and malonyl-CoA decarboxylase in soleus muscle and in representative Type IIa and Type IIb muscles. A cytosolic activity of malonyl-CoA decarboxylase would seem to offer a feasible route for the disposal of malonyl-CoA in skeletal muscle.
Full Text
The Full Text of this article is available as a PDF (346.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdinejad A., Fisher A. M., Kumar S. Production and utilization of butyryl-CoA by fatty acid synthetase from mammalian tissues. Arch Biochem Biophys. 1981 Apr 15;208(1):135–145. doi: 10.1016/0003-9861(81)90132-6. [DOI] [PubMed] [Google Scholar]
- Abu-Elheiga L., Almarza-Ortega D. B., Baldini A., Wakil S. J. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997 Apr 18;272(16):10669–10677. doi: 10.1074/jbc.272.16.10669. [DOI] [PubMed] [Google Scholar]
- Allred J. B., Guy D. G. Determination of coenzyme A and acetyl CoA in tissue extracts. Anal Biochem. 1969 May;29(2):293–299. doi: 10.1016/0003-2697(69)90312-1. [DOI] [PubMed] [Google Scholar]
- Awan M. M., Saggerson E. D. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J. 1993 Oct 1;295(Pt 1):61–66. doi: 10.1042/bj2950061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bielefeld D. R., Vary T. C., Neely J. R. Inhibition of carnitine palmitoyl-CoA transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol. 1985 Jun;17(6):619–625. doi: 10.1016/s0022-2828(85)80030-4. [DOI] [PubMed] [Google Scholar]
- Carey E. M., Dils R. Fatty acid biosynthesis. V. Purification and characterisation of fatty acid synthetase from lactating-rabbit mammary gland. Biochim Biophys Acta. 1970 Sep 8;210(3):371–387. doi: 10.1016/0005-2760(70)90033-0. [DOI] [PubMed] [Google Scholar]
- Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
- Chen M. T., Kaufman L. N., Spennetta T., Shrago E. Effects of high fat-feeding to rats on the interrelationship of body weight, plasma insulin, and fatty acyl-coenzyme A esters in liver and skeletal muscle. Metabolism. 1992 May;41(5):564–569. doi: 10.1016/0026-0495(92)90221-u. [DOI] [PubMed] [Google Scholar]
- Corton J. M., Gillespie J. G., Hawley S. A., Hardie D. G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995 Apr 15;229(2):558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x. [DOI] [PubMed] [Google Scholar]
- Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
- Dyck D. J., Peters S. J., Wendling P. S., Spriet L. L. Effect of high FFA on glycogenolysis in oxidative rat hindlimb muscles during twitch stimulation. Am J Physiol. 1996 Apr;270(4 Pt 2):R766–R776. doi: 10.1152/ajpregu.1996.270.4.R766. [DOI] [PubMed] [Google Scholar]
- EVANS W. H., MUELLER P. S. EFFECTS OF PALMITATE ON THE METABOLISM OF LEUKOCYTES FROM GUINEA PIG EXUDATE. J Lipid Res. 1963 Jan;4:39–45. [PubMed] [Google Scholar]
- Faergeman N. J., Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J. 1997 Apr 1;323(Pt 1):1–12. doi: 10.1042/bj3230001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forsey R. G., Reid K., Brosnan J. T. Competition between fatty acids and carbohydrate or ketone bodies as metabolic fuels for the isolated perfused heart. Can J Physiol Pharmacol. 1987 Mar;65(3):401–406. doi: 10.1139/y87-067. [DOI] [PubMed] [Google Scholar]
- Ha J., Lee J. K., Kim K. S., Witters L. A., Kim K. H. Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11466–11470. doi: 10.1073/pnas.93.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
- Hardie D. G. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res. 1989;28(2):117–146. doi: 10.1016/0163-7827(89)90010-6. [DOI] [PubMed] [Google Scholar]
- Holland R., Witters L. A., Hardie D. G. Glucagon inhibits fatty acid synthesis in isolated hepatocytes via phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase. Eur J Biochem. 1984 Apr 16;140(2):325–333. doi: 10.1111/j.1432-1033.1984.tb08105.x. [DOI] [PubMed] [Google Scholar]
- Holm C., Kirchgessner T. G., Svenson K. L., Fredrikson G., Nilsson S., Miller C. G., Shively J. E., Heinzmann C., Sparkes R. S., Mohandas T. Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science. 1988 Sep 16;241(4872):1503–1506. doi: 10.1126/science.3420405. [DOI] [PubMed] [Google Scholar]
- Hue L., Blackmore P. F., Shikama H., Robinson-Steiner A., Exton J. H. Regulation of fructose-2,6-bisphosphate content in rat hepatocytes, perfused hearts, and perfused hindlimbs. J Biol Chem. 1982 Apr 25;257(8):4308–4313. [PubMed] [Google Scholar]
- Hutber C. A., Hardie D. G., Winder W. W. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol. 1997 Feb;272(2 Pt 1):E262–E266. doi: 10.1152/ajpendo.1997.272.2.E262. [DOI] [PubMed] [Google Scholar]
- Issad T., Pénicaud L., Ferré P., Kandé J., Baudon M. A., Girard J. Effects of fasting on tissue glucose utilization in conscious resting rats. Major glucose-sparing effect in working muscles. Biochem J. 1987 Aug 15;246(1):241–244. doi: 10.1042/bj2460241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkins A. B., Storlien L. H., Chisholm D. J., Kraegen E. W. Effects of nonesterified fatty acid availability on tissue-specific glucose utilization in rats in vivo. J Clin Invest. 1988 Jul;82(1):293–299. doi: 10.1172/JCI113586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley D. E., Reilly J. P., Veneman T., Mandarino L. J. Effects of insulin on skeletal muscle glucose storage, oxidation, and glycolysis in humans. Am J Physiol. 1990 Jun;258(6 Pt 1):E923–E929. doi: 10.1152/ajpendo.1990.258.6.E923. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Kolattukudy P. E. Purification and properties of malonyl-CoA decarboxylase from rat liver mitochondria and its immunological comparison with the enzymes from rat brain, heart, and mammary gland. Arch Biochem Biophys. 1978 Sep;190(1):234–246. doi: 10.1016/0003-9861(78)90273-4. [DOI] [PubMed] [Google Scholar]
- Leighton B., Budohoski L., Lozeman F. J., Challiss R. A., Newsholme E. A. The effect of prostaglandins E1, E2 and F2 alpha and indomethacin on the sensitivity of glycolysis and glycogen synthesis to insulin in stripped soleus muscles of the rat. Biochem J. 1985 Apr 1;227(1):337–340. doi: 10.1042/bj2270337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lloyd A. C., Carpenter C. A., Saggerson E. D. Intertissue differences in the hysteretic behaviour of carnitine palmitoyltransferase in the presence of malonyl-CoA. Biochem J. 1986 Jul 1;237(1):289–291. doi: 10.1042/bj2370289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopaschuk G. D., Gamble J. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Pharmacol. 1994 Oct;72(10):1101–1109. doi: 10.1139/y94-156. [DOI] [PubMed] [Google Scholar]
- Maizels E. Z., Ruderman N. B., Goodman M. N., Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977 Mar 15;162(3):557–568. doi: 10.1042/bj1620557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin B. R., Denton R. M. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm. Biochem J. 1970 May;117(5):861–877. doi: 10.1042/bj1170861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Stark M. J., Foster D. W. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem. 1978 Nov 25;253(22):8291–8293. [PubMed] [Google Scholar]
- Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues. Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 Jul 15;214(1):83–91. doi: 10.1042/bj2140083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montini J., Bagby G. J., Spitzer J. J. Importance of exogenous substrates for the energy production of adult rat heart myocytes. J Mol Cell Cardiol. 1981 Oct;13(10):903–911. doi: 10.1016/0022-2828(81)90289-3. [DOI] [PubMed] [Google Scholar]
- Odland L. M., Heigenhauser G. J., Lopaschuk G. D., Spriet L. L. Human skeletal muscle malonyl-CoA at rest and during prolonged submaximal exercise. Am J Physiol. 1996 Mar;270(3 Pt 1):E541–E544. doi: 10.1152/ajpendo.1996.270.3.E541. [DOI] [PubMed] [Google Scholar]
- Oscai L. B., Essig D. A., Palmer W. K. Lipase regulation of muscle triglyceride hydrolysis. J Appl Physiol (1985) 1990 Nov;69(5):1571–1577. doi: 10.1152/jappl.1990.69.5.1571. [DOI] [PubMed] [Google Scholar]
- RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
- Randle P. J., Priestman D. A., Mistry S., Halsall A. Mechanisms modifying glucose oxidation in diabetes mellitus. Diabetologia. 1994 Sep;37 (Suppl 2):S155–S161. doi: 10.1007/BF00400839. [DOI] [PubMed] [Google Scholar]
- Rennie M. J., Holloszy J. O. Inhibition of glucose uptake and glycogenolysis by availability of oleate in well-oxygenated perfused skeletal muscle. Biochem J. 1977 Nov 15;168(2):161–170. doi: 10.1042/bj1680161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rennie M. J., Winder W. W., Holloszy J. O. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976 Jun 15;156(3):647–655. doi: 10.1042/bj1560647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabina R. L., Patterson D., Holmes E. W. 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J Biol Chem. 1985 May 25;260(10):6107–6114. [PubMed] [Google Scholar]
- Saddik M., Gamble J., Witters L. A., Lopaschuk G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836–25845. [PubMed] [Google Scholar]
- Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
- Saha A. K., Kurowski T. G., Ruderman N. B. A malonyl-CoA fuel-sensing mechanism in muscle: effects of insulin, glucose, and denervation. Am J Physiol. 1995 Aug;269(2 Pt 1):E283–E289. doi: 10.1152/ajpendo.1995.269.2.E283. [DOI] [PubMed] [Google Scholar]
- Saha A. K., Vavvas D., Kurowski T. G., Apazidis A., Witters L. A., Shafrir E., Ruderman N. B. Malonyl-CoA regulation in skeletal muscle: its link to cell citrate and the glucose-fatty acid cycle. Am J Physiol. 1997 Apr;272(4 Pt 1):E641–E648. doi: 10.1152/ajpendo.1997.272.4.E641. [DOI] [PubMed] [Google Scholar]
- Seleznev Iu M., Martynov A. V. Permissive effect of glucocorticoids in catecholamine action in the heart: possible mechanism. J Mol Cell Cardiol. 1982 Sep;14 (Suppl 3):49–58. doi: 10.1016/0022-2828(82)90129-8. [DOI] [PubMed] [Google Scholar]
- Shepherd D., Garland P. B. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J. 1969 Sep;114(3):597–610. doi: 10.1042/bj1140597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sidossis L. S., Wolfe R. R. Glucose and insulin-induced inhibition of fatty acid oxidation: the glucose-fatty acid cycle reversed. Am J Physiol. 1996 Apr;270(4 Pt 1):E733–E738. doi: 10.1152/ajpendo.1996.270.4.E733. [DOI] [PubMed] [Google Scholar]
- Singh B., Stakkestad J. A., Bremer J., Borrebaek B. Determination of malonyl-coenzyme A in rat heart, kidney, and liver: a comparison between acetyl-coenzyme A and butyryl-coenzyme A as fatty acid synthase primers in the assay procedure. Anal Biochem. 1984 Apr;138(1):107–111. doi: 10.1016/0003-2697(84)90776-0. [DOI] [PubMed] [Google Scholar]
- Spitzer J. J. Effect of lactate infusion on canine myocardial free fatty acid metabolism in vivo. Am J Physiol. 1974 Jan;226(1):213–217. doi: 10.1152/ajplegacy.1974.226.1.213. [DOI] [PubMed] [Google Scholar]
- Spitzer J. J., Spitzer J. A. Myocardial metabolism in dogs during hemorrhagic shock. Am J Physiol. 1972 Jan;222(1):101–105. doi: 10.1152/ajplegacy.1972.222.1.101. [DOI] [PubMed] [Google Scholar]
- Spriet L. L., Dyck D. J., Cederblad G., Hultman E. Effects of fat availability on acetyl-CoA and acetylcarnitine metabolism in rat skeletal muscle. Am J Physiol. 1992 Sep;263(3 Pt 1):C653–C659. doi: 10.1152/ajpcell.1992.263.3.C653. [DOI] [PubMed] [Google Scholar]
- Stanley W. C., Connett R. J. Regulation of muscle carbohydrate metabolism during exercise. FASEB J. 1991 May;5(8):2155–2159. doi: 10.1096/fasebj.5.8.1827082. [DOI] [PubMed] [Google Scholar]
- Sullivan J. E., Carey F., Carling D., Beri R. K. Characterisation of 5'-AMP-activated protein kinase in human liver using specific peptide substrates and the effects of 5'-AMP analogues on enzyme activity. Biochem Biophys Res Commun. 1994 May 16;200(3):1551–1556. doi: 10.1006/bbrc.1994.1627. [DOI] [PubMed] [Google Scholar]
- Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trumble G. E., Smith M. A., Winder W. W. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem. 1995 Jul 1;231(1):192–198. doi: 10.1111/j.1432-1033.1995.tb20686.x. [DOI] [PubMed] [Google Scholar]
- Vavvas D., Apazidis A., Saha A. K., Gamble J., Patel A., Kemp B. E., Witters L. A., Ruderman N. B. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997 May 16;272(20):13255–13261. doi: 10.1074/jbc.272.20.13255. [DOI] [PubMed] [Google Scholar]
- Walker M., Fulcher G. R., Sum C. F., Orskov H., Alberti K. G. Effect of glycemia and nonesterified fatty acids on forearm glucose uptake in normal humans. Am J Physiol. 1991 Sep;261(3 Pt 1):E304–E311. doi: 10.1152/ajpendo.1991.261.3.E304. [DOI] [PubMed] [Google Scholar]
- Widmer J., Fassihi K. S., Schlichter S. C., Wheeler K. S., Crute B. E., King N., Nutile-McMenemy N., Noll W. W., Daniel S., Ha J. Identification of a second human acetyl-CoA carboxylase gene. Biochem J. 1996 Jun 15;316(Pt 3):915–922. doi: 10.1042/bj3160915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winder W. W., Arogyasami J., Barton R. J., Elayan I. M., Vehrs P. R. Muscle malonyl-CoA decreases during exercise. J Appl Physiol (1985) 1989 Dec;67(6):2230–2233. doi: 10.1152/jappl.1989.67.6.2230. [DOI] [PubMed] [Google Scholar]
- Winder W. W., Duan C. Control of fructose 2,6-diphosphate in muscle of exercising fasted rats. Am J Physiol. 1992 Jun;262(6 Pt 1):E919–E924. doi: 10.1152/ajpendo.1992.262.6.E919. [DOI] [PubMed] [Google Scholar]
- Winder W. W., Hardie D. G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996 Feb;270(2 Pt 1):E299–E304. doi: 10.1152/ajpendo.1996.270.2.E299. [DOI] [PubMed] [Google Scholar]
- Winder W. W., MacLean P. S., Lucas J. C., Fernley J. E., Trumble G. E. Effect of fasting and refeeding on acetyl-CoA carboxylase in rat hindlimb muscle. J Appl Physiol (1985) 1995 Feb;78(2):578–582. doi: 10.1152/jappl.1995.78.2.578. [DOI] [PubMed] [Google Scholar]
- Winder W. W., Wilson H. A., Hardie D. G., Rasmussen B. B., Hutber C. A., Call G. B., Clayton R. D., Conley L. M., Yoon S., Zhou B. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol (1985) 1997 Jan;82(1):219–225. doi: 10.1152/jappl.1997.82.1.219. [DOI] [PubMed] [Google Scholar]
- Zorzano A., Balon T. W., Brady L. J., Rivera P., Garetto L. P., Young J. C., Goodman M. N., Ruderman N. B. Effects of starvation and exercise on concentrations of citrate, hexose phosphates and glycogen in skeletal muscle and heart. Evidence for selective operation of the glucose-fatty acid cycle. Biochem J. 1985 Dec 1;232(2):585–591. doi: 10.1042/bj2320585. [DOI] [PMC free article] [PubMed] [Google Scholar]
