Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 15;334(Pt 1):251–259. doi: 10.1042/bj3340251

Bovine acetylcholinesterase: cloning, expression and characterization.

I Mendelson 1, C Kronman 1, N Ariel 1, A Shafferman 1, B Velan 1
PMCID: PMC1219686  PMID: 9693127

Abstract

The bovine acetylcholinesterase (BoAChE) gene was cloned from genomic DNA and its structure was determined. Five exons coding for the AChE T-subunit and the alternative H-subunit were identified and their organization suggests high conservation of structure in mammalian AChE genes. The deduced amino acid sequence of the bovine T-subunit is highly similar to the human sequence, showing differences at 34 positions only. However, the cloned BoAChE sequence differs from the published amino acid sequence of AChE isolated from fetal bovine serum (FBS) by: (1) 13 amino acids, 12 of which are conserved between BoAChE and human AChE, and (2) the presence of four rather than five potential N-glycosylation sites. The full coding sequence of the mature BoAChE T-subunit was expressed in human embryonal kidney 293 cells (HEK-293). The catalytic properties of recombinant BoAChE and its reactivity towards various inhibitors were similar to those of the native bovine enzyme. Soluble recombinant BoAChE is composed of monomers, dimers and tetramers, yet in contrast to FBS-AChE, tetramer formation is not efficient. Comparative SDS/PAGE analysis reveals that all four potential N-glycosylation sites identified by DNA sequencing appear to be utilized, and that recombinant BoAChE comigrates with FBS-AChE. A major difference between the recombinant enzyme and the native enzyme was observed when clearance from circulation was examined. The HEK-293-derived enzyme was cleared from the circulation at a much faster rate than FBS-AChE. This difference in behaviour, together with previous studies on the effect of post-translation modification on human AChE clearance [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959-967] suggests that cell-dependent glycosylation plays a key role in AChE circulatory residence.

Full Text

The Full Text of this article is available as a PDF (931.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak D., Kronman C., Ordentlich A., Ariel N., Bromberg A., Marcus D., Lazar A., Velan B., Shafferman A. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J Biol Chem. 1994 Mar 4;269(9):6296–6305. [PubMed] [Google Scholar]
  2. Blong R. M., Bedows E., Lockridge O. Tetramerization domain of human butyrylcholinesterase is at the C-terminus. Biochem J. 1997 Nov 1;327(Pt 3):747–757. doi: 10.1042/bj3270747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bon S., Coussen F., Massoulié J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3016–3021. doi: 10.1074/jbc.272.5.3016. [DOI] [PubMed] [Google Scholar]
  4. Bon S., Massoulié J. Collagen-tailed and hydrophobic components of acetylcholinesterase in Torpedo marmorata electric organ. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4464–4468. doi: 10.1073/pnas.77.8.4464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chatonnet A., Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J. 1989 Jun 15;260(3):625–634. doi: 10.1042/bj2600625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coussen F., Bonnerot C., Massoulié J. Stable expression of acetylcholinesterase and associated collagenic subunits in transfected RBL cell lines: production of GPI-anchored dimers and collagen-tailed forms. Eur J Cell Biol. 1995 Jul;67(3):254–260. [PubMed] [Google Scholar]
  7. Doctor B. P., Chapman T. C., Christner C. E., Deal C. D., De La Hoz D. M., Gentry M. K., Ogert R. A., Rush R. S., Smyth K. K., Wolfe A. D. Complete amino acid sequence of fetal bovine serum acetylcholinesterase and its comparison in various regions with other cholinesterases. FEBS Lett. 1990 Jun 18;266(1-2):123–127. doi: 10.1016/0014-5793(90)81522-p. [DOI] [PubMed] [Google Scholar]
  8. Duval N., Massoulié J., Bon S. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. J Cell Biol. 1992 Aug;118(3):641–653. doi: 10.1083/jcb.118.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  10. Fuentes M. E., Inestrosa N. C. Characterization of a tetrameric G4 form of acetylcholinesterase from bovine brain: a comparison with the dimeric G2 form of the electric organ. Mol Cell Biochem. 1988 May;81(1):53–64. doi: 10.1007/BF00225653. [DOI] [PubMed] [Google Scholar]
  11. Goochee C. F. Bioprocess factors affecting glycoprotein oligosaccharide structure. Dev Biol Stand. 1992;76:95–104. [PubMed] [Google Scholar]
  12. Gough N. R., Randall W. R. Oligomerization of chicken acetylcholinesterase does not require intersubunit disulfide bonds. J Neurochem. 1995 Dec;65(6):2734–2741. doi: 10.1046/j.1471-4159.1995.65062734.x. [DOI] [PubMed] [Google Scholar]
  13. Grassi J., Vigny M., Massoulié J. Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J Neurochem. 1982 Feb;38(2):457–469. doi: 10.1111/j.1471-4159.1982.tb08651.x. [DOI] [PubMed] [Google Scholar]
  14. Haas R., Jackson B. C., Reinhold B., Foster J. D., Rosenberry T. L. Glycoinositol phospholipid anchor and protein C-terminus of bovine erythrocyte acetylcholinesterase: analysis by mass spectrometry and by protein and DNA sequencing. Biochem J. 1996 Mar 15;314(Pt 3):817–825. doi: 10.1042/bj3140817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heider H., Brodbeck U. Monomerization of tetrameric bovine caudate nucleus acetylcholinesterase. Implications for hydrophobic assembly and membrane anchor attachment site. Biochem J. 1992 Jan 1;281(Pt 1):279–284. doi: 10.1042/bj2810279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inestrosa N. C., Roberts W. L., Marshall T. L., Rosenberry T. L. Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J Biol Chem. 1987 Apr 5;262(10):4441–4444. [PubMed] [Google Scholar]
  17. Kerem A., Kronman C., Bar-Nun S., Shafferman A., Velan B. Interrelations between assembly and secretion of recombinant human acetylcholinesterase. J Biol Chem. 1993 Jan 5;268(1):180–184. [PubMed] [Google Scholar]
  18. Kronman C., Velan B., Gozes Y., Leitner M., Flashner Y., Lazar A., Marcus D., Sery T., Papier Y., Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene. 1992 Nov 16;121(2):295–304. doi: 10.1016/0378-1119(92)90134-b. [DOI] [PubMed] [Google Scholar]
  19. Kronman C., Velan B., Marcus D., Ordentlich A., Reuveny S., Shafferman A. Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem J. 1995 Nov 1;311(Pt 3):959–967. doi: 10.1042/bj3110959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lazar A., Reuveny S., Kronman C., Velan B., Shafferman A. Evaluation of anchorage-dependent cell propagation systems for production of human acetylcholinesterase by recombinant 293 cells. Cytotechnology. 1993;13(2):115–123. doi: 10.1007/BF00749938. [DOI] [PubMed] [Google Scholar]
  22. Lee S. L., Taylor P. Structural characterization of the asymmetric (17 + 13) S species of acetylcholinesterase from Torpedo. II. Component peptides obtained by selective proteolysis and disulfide bond reduction. J Biol Chem. 1982 Oct 25;257(20):12292–12301. [PubMed] [Google Scholar]
  23. Legay C., Bon S., Vernier P., Coussen F., Massoulié J. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J Neurochem. 1993 Jan;60(1):337–346. doi: 10.1111/j.1471-4159.1993.tb05856.x. [DOI] [PubMed] [Google Scholar]
  24. Li Y., Camp S., Rachinsky T. L., Getman D., Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem. 1991 Dec 5;266(34):23083–23090. [PubMed] [Google Scholar]
  25. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  26. Maulet Y., Camp S., Gibney G., Rachinsky T. L., Ekström T. J., Taylor P. Single gene encodes glycophospholipid-anchored and asymmetric acetylcholinesterase forms: alternative coding exons contain inverted repeat sequences. Neuron. 1990 Feb;4(2):289–301. doi: 10.1016/0896-6273(90)90103-m. [DOI] [PubMed] [Google Scholar]
  27. Morel N., Massoulié J. Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris. Biochem J. 1997 Nov 15;328(Pt 1):121–129. doi: 10.1042/bj3280121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mutero A., Fournier D. Post-translational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes. J Biol Chem. 1992 Jan 25;267(3):1695–1700. [PubMed] [Google Scholar]
  29. Ordentlich A., Barak D., Kronman C., Flashner Y., Leitner M., Segall Y., Ariel N., Cohen S., Velan B., Shafferman A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993 Aug 15;268(23):17083–17095. [PubMed] [Google Scholar]
  30. Ordentlich A., Kronman C., Barak D., Stein D., Ariel N., Marcus D., Velan B., Shafferman A. Engineering resistance to 'aging' of phosphylated human acetylcholinesterase. Role of hydrogen bond network in the active center. FEBS Lett. 1993 Nov 15;334(2):215–220. doi: 10.1016/0014-5793(93)81714-b. [DOI] [PubMed] [Google Scholar]
  31. Rachinsky T. L., Camp S., Li Y., Ekström T. J., Newton M., Taylor P. Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species. Neuron. 1990 Sep;5(3):317–327. doi: 10.1016/0896-6273(90)90168-f. [DOI] [PubMed] [Google Scholar]
  32. Ralston J. S., Rush R. S., Doctor B. P., Wolfe A. D. Acetylcholinesterase from fetal bovine serum. Purification and characterization of soluble G4 enzyme. J Biol Chem. 1985 Apr 10;260(7):4312–4318. [PubMed] [Google Scholar]
  33. Randall W. R. Cellular expression of a cloned, hydrophilic, murine acetylcholinesterase. Evidence of palmitoylated membrane-bound forms. J Biol Chem. 1994 Apr 22;269(16):12367–12374. [PubMed] [Google Scholar]
  34. Raveh L., Grunwald J., Marcus D., Papier Y., Cohen E., Ashani Y. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. Biochem Pharmacol. 1993 Jun 22;45(12):2465–2474. doi: 10.1016/0006-2952(93)90228-o. [DOI] [PubMed] [Google Scholar]
  35. Roberts W. L., Doctor B. P., Foster J. D., Rosenberry T. L. Bovine brain acetylcholinesterase primary sequence involved in intersubunit disulfide linkages. J Biol Chem. 1991 Apr 25;266(12):7481–7487. [PubMed] [Google Scholar]
  36. Rosenberry T. L., Scoggin D. M. Structure of human erythrocyte acetylcholinesterase. Characterization of intersubunit disulfide bonding and detergent interaction. J Biol Chem. 1984 May 10;259(9):5643–5652. [PubMed] [Google Scholar]
  37. Saxena A., Raveh L., Ashani Y., Doctor B. P. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. Biochemistry. 1997 Jun 17;36(24):7481–7489. doi: 10.1021/bi963156d. [DOI] [PubMed] [Google Scholar]
  38. Schumacher M., Camp S., Maulet Y., Newton M., MacPhee-Quigley K., Taylor S. S., Friedmann T., Taylor P. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. 1986 Jan 30-Feb 5Nature. 319(6052):407–409. doi: 10.1038/319407a0. [DOI] [PubMed] [Google Scholar]
  39. Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem. 1992 Sep 5;267(25):17640–17648. [PubMed] [Google Scholar]
  40. Shafferman A., Ordentlich A., Barak D., Kronman C., Ber R., Bino T., Ariel N., Osman R., Velan B. Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase. EMBO J. 1994 Aug 1;13(15):3448–3455. doi: 10.1002/j.1460-2075.1994.tb06650.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D., Ariel N. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 1992 Oct;11(10):3561–3568. doi: 10.1002/j.1460-2075.1992.tb05439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sikorav J. L., Duval N., Anselmet A., Bon S., Krejci E., Legay C., Osterlund M., Reimund B., Massoulié J. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form. EMBO J. 1988 Oct;7(10):2983–2993. doi: 10.1002/j.1460-2075.1988.tb03161.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Silman I., Futerman A. H. Modes of attachment of acetylcholinesterase to the surface membrane. Eur J Biochem. 1987 Dec 30;170(1-2):11–22. doi: 10.1111/j.1432-1033.1987.tb13662.x. [DOI] [PubMed] [Google Scholar]
  44. Simon S., Massoulié J. Cloning and expression of acetylcholinesterase from Electrophorus. Splicing pattern of the 3' exons in vivo and in transfected mammalian cells. J Biol Chem. 1997 Dec 26;272(52):33045–33055. doi: 10.1074/jbc.272.52.33045. [DOI] [PubMed] [Google Scholar]
  45. Soreq H., Ben-Aziz R., Prody C. A., Seidman S., Gnatt A., Neville L., Lieman-Hurwitz J., Lev-Lehman E., Ginzberg D., Lipidot-Lifson Y. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9688–9692. doi: 10.1073/pnas.87.24.9688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S., Shafferman A. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. J Biol Chem. 1991 Dec 15;266(35):23977–23984. [PubMed] [Google Scholar]
  47. Velan B., Kronman C., Flashner Y., Shafferman A. Reversal of signal-mediated cellular retention by subunit assembly of human acetylcholinesterase. J Biol Chem. 1994 Sep 9;269(36):22719–22725. [PubMed] [Google Scholar]
  48. Velan B., Kronman C., Ordentlich A., Flashner Y., Leitner M., Cohen S., Shafferman A. N-glycosylation of human acetylcholinesterase: effects on activity, stability and biosynthesis. Biochem J. 1993 Dec 15;296(Pt 3):649–656. doi: 10.1042/bj2960649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vellom D. C., Radić Z., Li Y., Pickering N. A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993 Jan 12;32(1):12–17. doi: 10.1021/bi00052a003. [DOI] [PubMed] [Google Scholar]
  50. Wigler M., Silverstein S., Lee L. S., Pellicer A., Cheng Y. c., Axel R. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 1977 May;11(1):223–232. doi: 10.1016/0092-8674(77)90333-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES