Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 1;334(Pt 2):315–319. doi: 10.1042/bj3340315

5-Octadecenoic acid: evidence for a novel type of fatty acid modification in schistosomes.

J F Brouwers 1, C Versluis 1, L M van Golde 1, A G Tielens 1
PMCID: PMC1219692  PMID: 9716488

Abstract

The lipid metabolism of schistosomes is characterized by several intriguing adaptations to a parasitic way of living. The surface of the parasite consists of two closely apposed phospholipid bilayers, a structure unique to blood flukes. Schistosomes do not synthesize fatty acids de novo, but are able to modify fatty acids, which they obtain from the host, by chain elongation. Here we present evidence that schistosomes are capable of another type of fatty acid modification, resulting in the formation of 5-octadecenoic acid [C18:1(5)]. This highly unusual fatty acid, which is absent in the blood of the host, was shown to be almost exclusively located in the outer membrane complex of the schistosome. Within these membranes, it was almost exclusively present in one molecular phospholipid species, 1-palmitoyl-2,5-octadecenoyl phosphatidylcholine [C16:0-18:1(5)PtdCho]. Apart from dipalmitoyl phosphatidylcholine, this was the most abundant phosphatidylcholine species in the outer membrane complex. The specific synthesis by the schistosome of C18:1(5) and the highly specific localization of this fatty acid to the tegumental membranes suggest an important tegument-mediated role for this lipid.

Full Text

The Full Text of this article is available as a PDF (309.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Payares G., Evans W. H. The phospholipid and fatty acid composition of Schistosoma mansoni and of its purified tegumental membranes. Mol Biochem Parasitol. 1987 Mar;23(2):123–128. doi: 10.1016/0166-6851(87)90147-2. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Brouwers J. F., Gadella B. M., van Golde L. M., Tielens A. G. Quantitative analysis of phosphatidylcholine molecular species using HPLC and light scattering detection. J Lipid Res. 1998 Feb;39(2):344–353. [PubMed] [Google Scholar]
  4. Brouwers J. F., Smeenk I. M., van Golde L. M., Tielens A. G. The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni. Mol Biochem Parasitol. 1997 Sep;88(1-2):175–185. doi: 10.1016/s0166-6851(97)00091-1. [DOI] [PubMed] [Google Scholar]
  5. Cordero M. M., Wesdemiotis C. Characterization of the neutral products formed upon the charge-remote fragmentation of fatty acid ions. Anal Chem. 1994 Mar 15;66(6):861–866. doi: 10.1021/ac00078a017. [DOI] [PubMed] [Google Scholar]
  6. Heimermann W. H., Holman R. T., Gordon D. T., Kowalyshyn D. E., Jensen R. G. Effect of double bond position in octadecenoates upon hydrolysis by pancreatic lipase. Lipids. 1973 Jan;8(1):45–47. doi: 10.1007/BF02533239. [DOI] [PubMed] [Google Scholar]
  7. Jefferts E., Morales R. W., Litchfield C. Occurrence of cis-5, cis-9-hexacosadienoic and cis-5, cis-9, cis-19-hexacosatrienoic acids in the marine sponge Microciona prolifera. Lipids. 1974 Apr;9(4):244–247. doi: 10.1007/BF02532200. [DOI] [PubMed] [Google Scholar]
  8. Jensen N. J., Tomer K. B., Gross M. L. FAB MS/MS for phosphatidylinositol, -glycerol, -ethanolamine and other complex phospholipids. Lipids. 1987 Jul;22(7):480–489. doi: 10.1007/BF02540363. [DOI] [PubMed] [Google Scholar]
  9. Mclaren D. J., Hockley D. J. Blood flukes have a double outer membrane. Nature. 1977 Sep 8;269(5624):147–149. doi: 10.1038/269147a0. [DOI] [PubMed] [Google Scholar]
  10. Meyer F., Meyer H., Bueding E. Lipid metabolism in the parasitic and free-living flatworms, Schistosoma mansoni and Dugesia dorotocephala. Biochim Biophys Acta. 1970 Jul 14;210(2):257–266. doi: 10.1016/0005-2760(70)90170-0. [DOI] [PubMed] [Google Scholar]
  11. Roberts S. M., MacGregor A. N., Vojvodic M., Wells E., Crabtree J. E., Wilson R. A. Tegument surface membranes of adult Schistosoma mansoni: development of a method for their isolation. Mol Biochem Parasitol. 1983 Oct;9(2):105–127. doi: 10.1016/0166-6851(83)90104-4. [DOI] [PubMed] [Google Scholar]
  12. Rosenthal M. D. Apparent specificity of the thrombin-stimulated deacylation of endothelial glycerolipids for polyunsaturated fatty acids with a delta-5 desaturation. Biochim Biophys Acta. 1987 Feb 14;917(2):279–289. doi: 10.1016/0005-2760(87)90132-9. [DOI] [PubMed] [Google Scholar]
  13. Rosenthal M. D., Garcia M. C., Sprecher H. Substrate specificity of the agonist-stimulated release of polyunsaturated fatty acids from vascular endothelial cells. Arch Biochem Biophys. 1989 Nov 1;274(2):590–600. doi: 10.1016/0003-9861(89)90474-8. [DOI] [PubMed] [Google Scholar]
  14. Wolff R. L. Structural importance of the cis-5 ethylenic bond in the endogenous desaturation product of dietary elaidic acid, cis-5,trans-9 18:2 acid, for the acylation of rat mitochondria phosphatidylinositol. Lipids. 1995 Oct;30(10):893–898. doi: 10.1007/BF02537479. [DOI] [PubMed] [Google Scholar]
  15. Zhou Y., Podesta R. B. Effects of serotonin (5HT) and complement C3 on the synthesis of the surface membrane precursors of adult Schistosoma mansoni. J Parasitol. 1989 Jun;75(3):333–343. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES