Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 1;334(Pt 2):335–344. doi: 10.1042/bj3340335

Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803.

P E Jensen 1, L C Gibson 1, C N Hunter 1
PMCID: PMC1219695  PMID: 9716491

Abstract

The I, D and H subunits (ChlI, ChlD and ChlH respectively) of the magnesium protoporphyrin IX chelatase from Synechocystis have been purified to homogeneity as a result of the overexpression of the encoding genes in Escherichia coli and the production of large quantities of histidine-tagged proteins. These subunits have been used in an initial investigation of the biochemical and kinetic properties of the enzyme. The availability of pure ChlI, ChlD and ChlH has allowed us to estimate the relative concentrations of the three protein components required for optimal activity, and to investigate the dependence of chelatase activity on the concentrations of MgCl2, ATP and protoporphyrin IX. It was found that, whereas ChlD and ChlH are likely to be monomeric, ChlI can aggregate in an ATP-dependent manner, changing from a dimeric to an octameric structure. Subunit titration assays suggest an optimal ratio of ChlI, ChlD and ChlH of 2:1:4 respectively. However, the dependence of chelatase activity on increasing concentrations of ChlI and ChlH with respect to ChlD suggests that these two subunits, at least in vitro, behave as substrates in their interaction with ChlD. Mg chelation could not be detected unless the Mg2+ concentration exceeded the ATP concentration, suggesting at least two requirements for Mg2+, one as a component of MgATP2-, the other as the chelated metal. The steady-state kinetic parameters were determined from continuous assays; the Km values for protoporphyrin, MgCl2 and ATP were 1.25 microM, 4.9 mM and 0.49 mM respectively. The rate dependence of Mg2+ was clearly sigmoidal with a Hill coefficient of 3, suggesting positive co-operativity. Initiating the reaction by the addition of one of the substrates in these continuous assays resulted in a significant lag period of at least 10 min before the linear production of Mg protoporphyrin. This lag was significantly decreased by preincubating ChlI and ChlD with ATP and MgCl2, and by mixing it with ChlH that had been preincubated with protoporphyrin IX, ATP and MgCl2. This suggests not only a close MgATP2--dependent interaction between ChlI and ChlD but also an interaction between ChlH and the protoporphyrin substrate that also is stimulated by ATP and MgCl2.

Full Text

The Full Text of this article is available as a PDF (499.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
  2. Brooks S. P., Storey K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem. 1992 Feb 14;201(1):119–126. doi: 10.1016/0003-2697(92)90183-8. [DOI] [PubMed] [Google Scholar]
  3. Chin D. T., Goff S. A., Webster T., Smith T., Goldberg A. L. Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J Biol Chem. 1988 Aug 25;263(24):11718–11728. [PubMed] [Google Scholar]
  4. Dailey H. A. Purification and characterization of membrane-bound ferrochelatase from Rhodopseudomonas sphaeroides. J Biol Chem. 1982 Dec 25;257(24):14714–14718. [PubMed] [Google Scholar]
  5. Debussche L., Couder M., Thibaut D., Cameron B., Crouzet J., Blanche F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol. 1992 Nov;174(22):7445–7451. doi: 10.1128/jb.174.22.7445-7451.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibson L. C., Marrison J. L., Leech R. M., Jensen P. E., Bassham D. C., Gibson M., Hunter C. N. A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol. 1996 May;111(1):61–71. doi: 10.1104/pp.111.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson L. C., Willows R. D., Kannangara C. G., von Wettstein D., Hunter C. N. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1941–1944. doi: 10.1073/pnas.92.6.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hansson M., Hederstedt L. Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis. Eur J Biochem. 1994 Feb 15;220(1):201–208. doi: 10.1111/j.1432-1033.1994.tb18615.x. [DOI] [PubMed] [Google Scholar]
  9. Huang H. W., Cowan J. A. Metallobiochemistry of the magnesium ion. Characterization of the essential metal-binding site in Escherichia coli ribonuclease H. Eur J Biochem. 1994 Jan 15;219(1-2):253–260. doi: 10.1111/j.1432-1033.1994.tb19936.x. [DOI] [PubMed] [Google Scholar]
  10. Jakob U., Scheibel T., Bose S., Reinstein J., Buchner J. Assessment of the ATP binding properties of Hsp90. J Biol Chem. 1996 Apr 26;271(17):10035–10041. doi: 10.1074/jbc.271.17.10035. [DOI] [PubMed] [Google Scholar]
  11. Jensen P. E., Gibson L. C., Henningsen K. W., Hunter C. N. Expression of the chlI, chlD, and chlH genes from the Cyanobacterium synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem. 1996 Jul 12;271(28):16662–16667. doi: 10.1074/jbc.271.28.16662. [DOI] [PubMed] [Google Scholar]
  12. Jensen P. E., Willows R. D., Petersen B. L., Vothknecht U. C., Stummann B. M., Kannangara C. G., von Wettstein D., Henningsen K. W. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet. 1996 Mar 7;250(4):383–394. doi: 10.1007/BF02174026. [DOI] [PubMed] [Google Scholar]
  13. Kannangara C. G., Vothknecht U. C., Hansson M., von Wettstein D. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet. 1997 Mar 18;254(1):85–92. doi: 10.1007/s004380050394. [DOI] [PubMed] [Google Scholar]
  14. Kini R. M., Evans H. J. A hypothetical structural role for proline residues in the flanking segments of protein-protein interaction sites. Biochem Biophys Res Commun. 1995 Jul 26;212(3):1115–1124. doi: 10.1006/bbrc.1995.2084. [DOI] [PubMed] [Google Scholar]
  15. Lanzilotta W. N., Fisher K., Seefeldt L. C. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Biochemistry. 1996 Jun 4;35(22):7188–7196. doi: 10.1021/bi9603985. [DOI] [PubMed] [Google Scholar]
  16. Lanzilotta W. N., Fisher K., Seefeldt L. C. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. J Biol Chem. 1997 Feb 14;272(7):4157–4165. doi: 10.1074/jbc.272.7.4157. [DOI] [PubMed] [Google Scholar]
  17. Matringe M., Camadro J. M., Joyard J., Douce R. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem. 1994 May 27;269(21):15010–15015. [PubMed] [Google Scholar]
  18. Papenbrock J., Gräfe S., Kruse E., Hänel F., Grimm B. Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J. 1997 Nov;12(5):981–990. doi: 10.1046/j.1365-313x.1997.12050981.x. [DOI] [PubMed] [Google Scholar]
  19. Petersen B. L., Jensen P. E., Gibson L. C., Stummann B. M., Hunter C. N., Henningsen K. W. Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J Bacteriol. 1998 Feb;180(3):699–704. doi: 10.1128/jb.180.3.699-704.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  21. Ryle M. J., Seefeldt L. C. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering. Biochemistry. 1996 Apr 16;35(15):4766–4775. doi: 10.1021/bi960026w. [DOI] [PubMed] [Google Scholar]
  22. Stanier R. Y., Cohen-Bazire G. Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol. 1977;31:225–274. doi: 10.1146/annurev.mi.31.100177.001301. [DOI] [PubMed] [Google Scholar]
  23. Thorneley R. N., Lowe D. J. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction. Biochem J. 1983 Nov 1;215(2):393–403. doi: 10.1042/bj2150393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thorneley R. N. Nitrogenase of Klebsiella pneumoniae: an MgATP hydrolysing energy transduction system with similarities to actomyosin and p21 ras. Philos Trans R Soc Lond B Biol Sci. 1992 Apr 29;336(1276):73–82. doi: 10.1098/rstb.1992.0046. [DOI] [PubMed] [Google Scholar]
  25. Walker C. J., Weinstein J. D. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5789–5793. doi: 10.1073/pnas.88.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walker C. J., Weinstein J. D. The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J. 1994 Apr 1;299(Pt 1):277–284. doi: 10.1042/bj2990277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walker C. J., Willows R. D. Mechanism and regulation of Mg-chelatase. Biochem J. 1997 Oct 15;327(Pt 2):321–333. doi: 10.1042/bj3270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Willows R. D., Gibson L. C., Kanangara C. G., Hunter C. N., von Wettstein D. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem. 1996 Jan 15;235(1-2):438–443. doi: 10.1111/j.1432-1033.1996.00438.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES