Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 1;334(Pt 2):387–392. doi: 10.1042/bj3340387

Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9 from Escherichia coli.

A J Pommer 1, R Wallis 1, G R Moore 1, R James 1, C Kleanthous 1
PMCID: PMC1219700  PMID: 9716496

Abstract

The cytotoxicity of the bacterial toxin colicin E9 is due to a non-specific DNase that penetrates the cytoplasm of the infected organism and causes cell death. We report the first enzymological characterization of the overexpressed and purified 15 kDa DNase domain (E9 DNase) from this class of toxin. CD spectroscopy shows the E9 DNase to be structured in solution, and analytical ultracentrifugation data indicate that the enzyme is a monomer. The nuclease activity of the E9 DNase was compared with the well-studied, non-specific DNase I by using a spectrophotometric assay with calf thymus DNA as the substrate. Both enzymes require divalent metal ions for activity but, unlike DNase I, the E9 DNase is not activated by Ca2+ ions. Somewhat surprisingly, the E9 DNase shows optimal activity and linear kinetics in the presence of transition metals such as Ni2+ and Co2+ but displays non-linear kinetics with metals such as Mg2+ and Ca2+. Conversely, Ni2+ and other transition metals showed poor activity in a plasmid-based nicking assay, yielding significant amounts of linearized plasmid, whereas Mg2+ was very active, with the main intermediate being open-circle DNA. The results suggest that, on entry into bacterial cells, the E9 DNase is likely to exhibit primarily Mg2+-dependent nicking activity against chromosomal DNA, although other metals could also be utilized to introduce both single- and double-strand cleavages.

Full Text

The Full Text of this article is available as a PDF (482.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti H., Frenette M., Baty D., Lloubès R., Geli V., Lazdunski C. Comparison of the uptake systems for the entry of various BtuB group colicins into Escherichia coli. J Gen Microbiol. 1989 Dec;135(12):3413–3420. doi: 10.1099/00221287-135-12-3413. [DOI] [PubMed] [Google Scholar]
  2. Boon T. Inactivation of ribosomes in vitro by colicin E 3 . Proc Natl Acad Sci U S A. 1971 Oct;68(10):2421–2425. doi: 10.1073/pnas.68.10.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev. 1995 Jul;16(4):295–307. doi: 10.1111/j.1574-6976.1995.tb00177.x. [DOI] [PubMed] [Google Scholar]
  4. Bénédetti H., Lloubès R., Lazdunski C., Letellier L. Colicin A unfolds during its translocation in Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J. 1992 Feb;11(2):441–447. doi: 10.1002/j.1460-2075.1992.tb05073.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell V. W., Jackson D. A. The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J Biol Chem. 1980 Apr 25;255(8):3726–3735. [PubMed] [Google Scholar]
  6. Cramer W. A., Heymann J. B., Schendel S. L., Deriy B. N., Cohen F. S., Elkins P. A., Stauffacher C. V. Structure-function of the channel-forming colicins. Annu Rev Biophys Biomol Struct. 1995;24:611–641. doi: 10.1146/annurev.bb.24.060195.003143. [DOI] [PubMed] [Google Scholar]
  7. Curtis M. D., James R. Investigation of the specificity of the interaction between colicin E9 and its immunity protein by site-directed mutagenesis. Mol Microbiol. 1991 Nov;5(11):2727–2733. doi: 10.1111/j.1365-2958.1991.tb01981.x. [DOI] [PubMed] [Google Scholar]
  8. Di Masi D. R., White J. C., Schnaitman C. A., Bradbeer C. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol. 1973 Aug;115(2):506–513. doi: 10.1128/jb.115.2.506-513.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doherty A. J., Worrall A. F., Connolly B. A. The roles of arginine 41 and tyrosine 76 in the coupling of DNA recognition to phosphodiester bond cleavage by DNase I: a study using site-directed mutagenesis. J Mol Biol. 1995 Aug 18;251(3):366–377. doi: 10.1006/jmbi.1995.0440. [DOI] [PubMed] [Google Scholar]
  10. Garinot-Schneider C., Pommer A. J., Moore G. R., Kleanthous C., James R. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis. J Mol Biol. 1996 Aug 2;260(5):731–742. doi: 10.1006/jmbi.1996.0433. [DOI] [PubMed] [Google Scholar]
  11. Gouaux E. The long and short of colicin action: the molecular basis for the biological activity of channel-forming colicins. Structure. 1997 Mar 15;5(3):313–317. doi: 10.1016/s0969-2126(97)00188-3. [DOI] [PubMed] [Google Scholar]
  12. Jakes K. S., Zinder N. D. Highly purified colicin E3 contains immunity protein. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3380–3384. doi: 10.1073/pnas.71.9.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. James R., Kleanthous C., Moore G. R. The biology of E colicins: paradigms and paradoxes. Microbiology. 1996 Jul;142(Pt 7):1569–1580. doi: 10.1099/13500872-142-7-1569. [DOI] [PubMed] [Google Scholar]
  14. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones S. J., Worrall A. F., Connolly B. A. Site-directed mutagenesis of the catalytic residues of bovine pancreatic deoxyribonuclease I. J Mol Biol. 1996 Dec 20;264(5):1154–1163. doi: 10.1006/jmbi.1996.0703. [DOI] [PubMed] [Google Scholar]
  16. KUNITZ M. Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol. 1950 Mar;33(4):349–362. doi: 10.1085/jgp.33.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  18. Kleanthous C., Hemmings A. M., Moore G. R., James R. Immunity proteins and their specificity for endonuclease colicins: telling right from wrong in protein-protein recognition. Mol Microbiol. 1998 Apr;28(2):227–233. doi: 10.1046/j.1365-2958.1998.00811.x. [DOI] [PubMed] [Google Scholar]
  19. Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742–4746. doi: 10.1073/pnas.71.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levinson B. L., Pickover C. A., Richards F. M. Dimerization by colicin E3 in the absence of immunity protein. J Biol Chem. 1983 Sep 25;258(18):10967–10972. [PubMed] [Google Scholar]
  21. Li W., Dennis C. A., Moore G. R., James R., Kleanthous C. Protein-protein interaction specificity of Im9 for the endonuclease toxin colicin E9 defined by homologue-scanning mutagenesis. J Biol Chem. 1997 Aug 29;272(35):22253–22258. doi: 10.1074/jbc.272.35.22253. [DOI] [PubMed] [Google Scholar]
  22. Mannherz H. G., Goody R. S., Konrad M., Nowak E. The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem. 1980 Mar;104(2):367–379. doi: 10.1111/j.1432-1033.1980.tb04437.x. [DOI] [PubMed] [Google Scholar]
  23. Ohno-Iwashita Y., Imahori K. Assignment of the functional loci in colicin E2 and E3 molecules by the characterization of their proteolytic fragments. Biochemistry. 1980 Feb 19;19(4):652–659. doi: 10.1021/bi00545a008. [DOI] [PubMed] [Google Scholar]
  24. Osborne M. J., Breeze A. L., Lian L. Y., Reilly A., James R., Kleanthous C., Moore G. R. Three-dimensional solution structure and 13C nuclear magnetic resonance assignments of the colicin E9 immunity protein Im9. Biochemistry. 1996 Jul 23;35(29):9505–9512. doi: 10.1021/bi960401k. [DOI] [PubMed] [Google Scholar]
  25. Osborne M. J., Wallis R., Leung K. Y., Williams G., Lian L. Y., James R., Kleanthous C., Moore G. R. Identification of critical residues in the colicin E9 DNase binding region of the Im9 protein. Biochem J. 1997 May 1;323(Pt 3):823–831. doi: 10.1042/bj3230823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parker M. W., Pattus F., Tucker A. D., Tsernoglou D. Structure of the membrane-pore-forming fragment of colicin A. Nature. 1989 Jan 5;337(6202):93–96. doi: 10.1038/337093a0. [DOI] [PubMed] [Google Scholar]
  27. Price P. A. The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease. J Biol Chem. 1975 Mar 25;250(6):1981–1986. [PubMed] [Google Scholar]
  28. Schaller K., Nomura M. Colicin E2 is DNA endonuclease. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3989–3993. doi: 10.1073/pnas.73.11.3989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Senior B. W., Holland I. B. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc Natl Acad Sci U S A. 1971 May;68(5):959–963. doi: 10.1073/pnas.68.5.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sidikaro J., Nomura M. E3 immunity substance. A protein from e3-colicinogenic cells that accounts for their immunity to colicin E3. J Biol Chem. 1974 Jan 25;249(2):445–453. [PubMed] [Google Scholar]
  31. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  32. Stroud R. Ion channel forming colicins. Curr Opin Struct Biol. 1995 Aug;5(4):514–520. doi: 10.1016/0959-440x(95)80037-9. [DOI] [PubMed] [Google Scholar]
  33. Wallis R., Leung K. Y., Osborne M. J., James R., Moore G. R., Kleanthous C. Specificity in protein-protein recognition: conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. Biochemistry. 1998 Jan 13;37(2):476–485. doi: 10.1021/bi971884a. [DOI] [PubMed] [Google Scholar]
  34. Wallis R., Leung K. Y., Pommer A. J., Videler H., Moore G. R., James R., Kleanthous C. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 2. Cognate and noncognate interactions that span the millimolar to femtomolar affinity range. Biochemistry. 1995 Oct 24;34(42):13751–13759. doi: 10.1021/bi00042a005. [DOI] [PubMed] [Google Scholar]
  35. Wallis R., Moore G. R., James R., Kleanthous C. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 1. Diffusion-controlled association and femtomolar binding for the cognate complex. Biochemistry. 1995 Oct 24;34(42):13743–13750. doi: 10.1021/bi00042a004. [DOI] [PubMed] [Google Scholar]
  36. Wallis R., Reilly A., Barnes K., Abell C., Campbell D. G., Moore G. R., James R., Kleanthous C. Tandem overproduction and characterisation of the nuclease domain of colicin E9 and its cognate inhibitor protein Im9. Eur J Biochem. 1994 Mar 1;220(2):447–454. doi: 10.1111/j.1432-1033.1994.tb18642.x. [DOI] [PubMed] [Google Scholar]
  37. Wallis R., Reilly A., Rowe A., Moore G. R., James R., Kleanthous C. In vivo and in vitro characterization of overproduced colicin E9 immunity protein. Eur J Biochem. 1992 Jul 15;207(2):687–695. doi: 10.1111/j.1432-1033.1992.tb17096.x. [DOI] [PubMed] [Google Scholar]
  38. Webster R. E. The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol. 1991 May;5(5):1005–1011. doi: 10.1111/j.1365-2958.1991.tb01873.x. [DOI] [PubMed] [Google Scholar]
  39. Wiener M., Freymann D., Ghosh P., Stroud R. M. Crystal structure of colicin Ia. Nature. 1997 Jan 30;385(6615):461–464. doi: 10.1038/385461a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES